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Abstract— Effectively combining tactile sensing and rein-
forcement learning (RL) creates powerful new pathways for
sophisticated robot manipulation. However, tactile information is
not always fully exploited by neural network-based approaches
in deep RL due to its unique characteristics (e.g. sparsity).
Departing from conventional reliance on idealised state rep-
resentations, we present a new approach to strengthen the
performance of sensory-driven agents for complex manipulation
tasks. We provide a novel application and analysis of tailored
reconstruction and multi-step dynamics objectives that help the
agent more effectively leverage its tactile observations. We find
that dynamics-based objectives unlock higher-performing agents
that are able to predict future contacts with high precision.
Experimental results show the efficacy of our approach through
a simulated robotic agent on three complex control tasks with
touch and proprioception alone. Project page with videos: elle-
miller.github.io/tactile rl

I. INTRODUCTION

Imagine a humanoid robot gently lifting your grandmother
out of her bed and into her wheelchair with the same
delicacy as a human caregiver, or a person with severe motor
impairments using a re-enabling robotic arm to brush their
teeth. For this future to safely materialise, we posit that robots
must evolve beyond only seeing their environment - they must
possess some capacity to feel it. Reinforcement learning (RL)
is a primary candidate for enabling tactile-based manipulation,
allowing robots to learn complex and optimal motions directly
from rich sensory data. However, despite interest in combining
tactile sensing with RL over the last decade [41, 22, 27, 43,
47, 36], key questions regarding optimal sensor type, sensor
placement, and information representation remain unanswered.
Most importantly, the very necessity of tactile sensing for
manipulation is ambiguous. For instance, [37, 32] achieve
impressive in-hand manipulation using proprioceptive history
alone, with [31] claiming that binary contacts do not add
value because this information is implicitly contained in
proprioceptive history.

Despite human proficiency in “blind” manipulation (requir-
ing no visual or privileged information at any point), we have
yet to see on-par capabilities emerge in RL agents. To our
knowledge, the most advanced dexterous blind RL demos
are object rotation [37, 50] and half-rotation of Baoding balls
[46]. [46] is the only work to study fully blind Baoding ball
rotation, and learn by explicitly estimating the ball poses.

elle.miller@ed.ac.uk
1University of Edinburgh, UK
2Google DeepMind
*This work was accepted at NeurIPS 2025, and is presented in 4-page

format here for the Dexterous Humanoid Manipulation workshop at the 2025
Humanoids conference.

The fastest robot policies in both simulation and real-world
experiments achieve 3 complete rotations in 10 seconds [52],
whereas humans can obtain ∼ 13.

We hypothesise that a capable blind agent hasn’t been
realised because deep RL struggles to extract a useful
representation from raw tactile data for robotic control. This
is due to the demanding task of simultaneously learning
the observation representation, policy, and value function
from a scalar reward. To alleviate this learning burden, self-
supervised learning (SSL) can provide an auxiliary signal to
help agents convert complex observations into useful repre-
sentations [17]. SSL objectives have been highly successful
in improving the performance of pixel-based RL agents [49,
25, 48], and recent works have attempted to apply these
techniques to the tactile modality (e.g. pixel reconstruction
[36], augmentation [11]). However, we suggest that these
objectives do not encourage the encoding of temporal features
that dictate state transitions such as object velocity, mass,
or friction, which can be important for complex control.
We aim to develop general-purpose self-supervised learning
methodologies that effectively leverage tactile observations
for robotic control tasks in RL. We desire the following
characteristics: (a) no global scene or visual information (b)
no privileged information (c) works across a diverse range
of contact dynamics (d) low sim2real gap. Inspired by the
low-cost setups in [50, 52], we study learning with binary
tactile activations to avoid transfer difficulties that can come
with continuous measurements [50]. Our main contributions
are:

• New findings on the need for tactile sensing: We
show that sparse binary contacts offer performance gains
over control errors and are sufficient for superhuman
performance in simulation.

• New SSL losses: We propose and analyse four SSL
objectives (tactile reconstruction, full reconstruction,
tactile dynamics, full dynamics) that enable tactile-based
robotic agents to outperform policy-gradient methods,
finding dynamics-based losses to be most useful.

• Super-human blind agents: Compared to RL-only
agents, our best self-supervised agents on average find
an object 36% faster (1.4 vs 1.9 seconds), bounce a ball
8 more times in 10 seconds (79 vs 71), and complete
17 in hand ball rotations compared to 5 in 10 seconds.

• Tactile manipulation benchmark: We release our three
Isaac Lab environments as a benchmark called RoTO:
Robot Tactile Olympiad to inspire progress in
tactile-based manipulation.



II. METHOD

A. Problem setting

We study a partially-observable Markov decision
process (POMDP) [18] parameterized by a tuple
⟨S ,O,F,A ,T ,R,γ⟩, where S is the state space,
O= {O i}N

i=1 is a set of N independent observation spaces,
F= {( fi,Oi)}N

i=1 is a set of N unknown function-codomain
pairs where each function fi : S → Oi maps elements of
the state space to elements of its paired observation space,
A is the action space, T : S ×A ×S → [0,1] is the
transition kernel, R : S ×A → R is the reward function,
and γ ∈ (0,1) is a discount factor.An agent interacts with
the POMDP via a policy π : O→ ∆(A ). The agent’s goal
is to find the optimal policy that maximises discounted
returns π⋆ = argmaxπ ∑

∞
i=1 γ tR(st ,at). We consider the class

of problems where an agent only has access to the set of
N = 2 observation spaces O= {O prop,Otact} (proprioceptive
and tactile). Note that we include the last taken robot action
in our definition of proprioception, from which control errors
can be deduced. Our RL setup (Figure 1, top) is as follows.
At each timestep t the environment returns proprioception
and tactile measurements, which are concatenated to form
the observation ot . This is inserted into a circular buffer,
which stores the last k observations to form the timestep’s
state st . The state is passed to the agent, which is comprised
of an encoder e, policy π and value function v. The
encoder is a large MLP that learns the state representation
zt = e(st), which the shallower policy and value function
are conditioned on. The self-supervised loss is added to
the policy, value, and entropy loss and backpropagated in a
single pass. The auxiliary loss optimises the encoder e and
its own task-specific networks.

B. Reconstruction-based SSL objectives

We hypothesise that a tactile-based RL agent learning with
gradient-based optimisation may prematurely converge to
features that provide immediate reward correlations, such
as proprioceptive histories. Thus, we propose to tailor the
typical input reconstruction objective to instead only decode
the tactile state ŝtact

t from the multimodal representation zt
(Figure 1, middle).. We formulate tactile reconstruction
(TR) as a binary classification problem using a binary cross-
entropy with logits loss. A positive weighting pc is used to
penalise instances where there are positive elements in stact

t
that the prediction ŝtact

t misses, computed per minibatch.

LTR(ŝtact
t ,stact

t ) =−(pcstact
t · log(ŝtact

t )+

(1− stact
t ) · log(1− ŝtact

t ))
(1)

To compare the effect of only decoding the tactile state, we
also analyse full reconstruction (FR) with an MSE loss for
the proprioceptive state.

LFR = LTR +MSE(ŝprop
t ,sprop

t ) (2)

full dynamics (FD)
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Fig. 1: Top: Our RL with self-supervision setup. The SSL loss
optimises the encoder e to help learn the state representation zt
which the policy and value function are conditioned on. Middle:
The reconstruction objectives encourage the encoder e to preserve
the tactile state in the representation by implementing reconstruction
as binary classification. Bottom: The multi-step forward dynamics
objectives optimise the encoder e to extract information from the
state st that will aid in predicting representations n f timesteps into
the future.

C. Dynamics-based SSL objectives

We propose that a multi-step forward dynamics objective
could distill tactile features into underlying components that
dictate state transitions, by encouraging the encoder to extract
information from the state st that will aid in accurately
predicting n f timesteps into the future. We implement this as
follows: a trajectory τ = (st ,at , ...st+n f ,at+n f ) of n f +1 state-
action pairs are sampled from a memory, and any sequence
containing episode-terminating transitions are filtered out.
Given the first latent state zt = e(st) and action at , the forward
model f predicts the next latent state ẑt+1 = f (zt ,at), and
this prediction is used as the input latent state for the next
prediction in an autoregressive fashion (Figure 1, bottom).
The dynamics loss Ldyn is the sum of the MSE between a
nonlinear projection of the predicted latent state p(ẑt+i) and
target state zT

t+i. The target state at a given timestep t + i
is produced by a target encoder eT , an exponential moving
average of the online encoder e, by embedding the actual
state at that timestep zT

t+i = eT (st+i). The loss for the full
dynamics (FD) prediction is given by:

LFD(τ) =

n f

∑
i=1

MSE
(

p(ẑt+i),zT
t+i

)
(3)

Finally, we combine the ideas above into a novel objective
called tactile dynamics (TD) that optimises the encoder to
learn a state representation zt that can both predict future
latent states and reconstruct the future tactile states.

LTD = LFD +

n f

∑
i=1

LTR(ŝtact
t+i ,s

tact
t+i ). (4)



(a) Find (b) Bounce (c) Baoding

Fig. 2: Our Robot Tactile Olympiad (RoTO) environments. (a) find a randomised object (T =5s), (b) bounce a ball (T =10s),
and (c) rotate Baoding balls (T =10s) – aiming for maximum efficiency in each. The observation space for all agents is a history of
proprioception and binary tactile activations.

III. EXPERIMENTAL SETUP

RL. We use a customised version of Proximal Policy
Optimisation (PPO) [33] from SKRL [35] for RL training,
using 4096 parallelised environments with 100 reserved for
continuous agent evaluation.

Hyperparameters. We run an individual sweep per envi-
ronment and method combination. While highly compute
expensive, it is necessary because the self-supervision’s
impact on the state representation fundamentally changes
the learning problem. Please consult the Appendix for the
procedure and values.

Environments. We evaluate our method on three custom
robotic manipulation tasks in Isaac Lab 2.0 [28] (Figure 2).
The environments were designed to cover a wide range of
tactile interactions (sparse, intermittent, and sustained) to
evaluate the generalisability of our method. We release our
baselines and environments as a benchmark called RoTO:
Robot Tactile Olympiad to inspire progress in tactile-
based robot manipulation. Please see the Appendix for full
POMDP and simulation details.
• Find: Find the location of a fixed sphere with randomised

initial position on a 20 cm × 20 cm plate as quickly as
possible in 5 seconds.

• Bounce: Bounce a ball as many times as possible in 10
seconds. The ball is modelled off a typical office stress
ball (70mm diameter, 30g). The (human) Guinness World
Record for this task is 353 bounces in 1 minute, which
corresponds with 58.8 bounces in 10 seconds.

• Baoding: Originating a millenia ago in China, Baoding
balls are used by rotating two or more balls repeatedly
in-hand. The task is to rotate two balls around each other
as many times as possible in 10 seconds. The fastest
human demonstration we could find online achieves 13
rotations in 10 seconds.

IV. RESULTS

RL-only. To evaluate the ability of RL-only agents to
extract effective tactile representations, we test proprioceptive-
tactile agents (prop-tactile) and proprioceptive agents
(prop). To isolate the contribution of the last action, we

also test removing this from the proprioception (prop(no
last action)). All results in Figure 3 depict the mean
evaluation return across at least 5 seeds in bold and ± 1
standard deviation as shaded. In Find, the agent with access
to tactile information is slightly more sample efficient, but
ultimately converges to the performance of the proprioceptive
agent. It is evident that the last action is key to success
of the proprioceptive agent, allowing contact inference with
the object. In Bounce, the agent with tactile information
is more sample efficient and reaches higher returns. The
proprioceptive agent without the last action still attains high
returns by performing a bounce motion with an outstretched
hand that appears agnostic to the ball state. In Baoding, the
additional tactile information drives the agent from complete
failure to success with high variance (5 successes, 6 failures
across 11 seeds). These results demonstrate the importance
of tactile information in the context of our tasks.

RL+SSL. We evaluate our four proposed SSL objectives:
tactile reconstruction, full reconstruction, forward dynamics,
and tactile forward dynamics. In the Appendix, these plots
are shown as physical quantities and for improved clarity
alternative figures of self-supervision in the Baoding task are
provided. As illustrated in Figure 4, agents trained with tactile
reconstruction and full dynamics objectives outperform RL-
only agents across all environments. Compared against each
other, the dynamics-optimised agent produces higher mean
returns in Find and Bounce. In Baoding, while the dynamics-
optimised agent achieves a much higher upper bound on
performance, the tactile reconstruction agent achieves a higher
mean return because of its tight performance distribution. The
performance of reconstruction and tactile dynamics was more
sensitive to environment, with no clear trend.

V. DISCUSSION

Q1: Do binary contacts offer benefits beyond proprio-
ceptive history for RL-only agents? Our results indicate that
that binary contacts do offer benefits beyond proprioceptive
histories and RL-only agents are capable of extracting useful
tactile representations, but not always reliably (Figure 3, Baod-
ing). The degree of usefulness also varies significantly across
tasks, suggesting the relevance of context. We hypothesise
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Fig. 3: RL-only. Mean evaluation returns of proprioceptive-tactile vs proprioceptive agents. To ascertain the importance of the last taken
action for the proprioceptive agents, we run one seed with this quantity removed from the observation.
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Fig. 4: RL+SSL. Mean evaluation returns of the self-supervised agents.

that since binary activations can reveal new contacts one
timestep faster than proprioceptive histories, this information
is more useful in dynamic tasks such as Bounce and Baoding
compared to Find which is static. We also hypothesise the
benefit in Bounce could also stem from providing contact
information about the ball (30g) that is perhaps too lightweight
to register in the control errors. Similarly, in Baoding the
balls’ motion is mostly perpendicular to the joint motion,
leading to negligible control errors.

Q2: How do the results correspond with real-world
metrics? The performance using real-world metrics is shown
in the Appendix Figure 5, with the bold bars depicting the
maximum value of the mean across seeds, and the shaded
bars depicting the maximum value across all seeds. The
performance improvements do correspond with meaningful
changes in physical behaviours. For example, our best self-
supervised agents on average find an object 36% faster (1.4
vs 1.9 seconds), bounce a ball 8 more times in 10 seconds
(79 vs 71), and complete 17 Baoding rotations compared to
5 in 10 seconds. We note that the best Bounce agent achieves
88 bounces in 10 seconds, beating the (human) Guinness
World Record of ∼ 58.

Q3: How well can a forward model learn the dynamics
of tactile interactions?

Very well. See the Appendix for plots of true positive rate,
false negative rate, precision, and recall for up to 10 timesteps
into the future for Bounce and Baoding. There we also also
provide a spatio-temporal visualisation of predicted vs actual
next tactile states. Fascinatingly, from the no-contact state s7

in Bounce, the decoder correctly anticipates contact in the
next state (albeit in the wrong locations). This result possibly
suggests that some form of object position information is
being encoded.

Q4: How does your research translate to practical
recommendations? We compress our findings into two
recommendations. Our work has demonstrated that “blind”
robotic agents trained jointly with self-supervision outperform
RL-only agents across a diverse range of control tasks. Thus,
our first recommendation is to train tactile-based RL agents
jointly with tactile reconstruction or full dynamics objectives,
if you are working in a similar setting and would like
to get a higher (and potentially more reliable) distribution
of returns. Second, while we acknowledge that increased
sensory information is theoretically advantageous, it incurs
substantial computational costs as well as being statistically
harder the space of functions over Zn is much larger than
{0,1}n. In addition, the bandwidth of pixel-based signals
directly limits the number of parallel environments that can
be executed in Isaac Lab and other simulators. Since our
work has revealed unexpected efficacy using binary tactile
observations, we recommend initially implementing simpler
tactile information formats (binary, discrete, continuous)
to maximise the advantages of GPU-accelerated RL, and
switching to pixel-based tactile representations if required by
research objectives.
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APPENDIX

VI. RELATED WORK

Pixel representation learning in reinforcement learning
(RL). RL agents tend to be poor representation learners when
input observations are high dimensional (e.g., pixels). While
early works in pixel-based RL did not target this issue [30,
29], most works in this space leverage auxiliary objectives
[17] in order to guide the learning of the representation.
Reconstruction is a popular objective studied in both the
model-free [19, 20, 49] and model-based paradigms [45, 44,
21, 13, 14, 15]. Pixel-perfect reconstruction requires that all
information is maintained, yet much of this information may
be irrelevant to learning control [38]. Instead, many auxiliary
objectives operate within the latent space, ranging widely
from forward dynamics [10, 34, 25], disentanglement [8,
9, 7], contrastive approaches [curl, 39, 1], to information-
theoretic objectives [23, 26]. In this work we examine how
these techniques can be applied to proprioceptive and tactile
robotic sensory modalities.

Multimodal representation learning in RL. Recent works
have aimed to produce a generalisable auxiliary objective
that operates over all modalities. [4] propose maximising
mutual information (MI) between unimodal and multimodal
representations to align the latent spaces. Noting this does not
filter irrelevant information, [51] suggest using an information
bottleneck [40] that maximises forward dynamics information.
[3] propose that self-supervised objectives should be modality-
specific, reconstruction for proprioception and contrastive
losses for images. We do not propose a generalisable

multimodal auxiliary objective, but auxiliary objectives to
better leverage the tactile modality.

Tactile representation learning in RL. Few works
focus specifically on leveraging self-supervised objectives to
improve tactile-based learning. Early work used a variational
autoencoder with forward dynamics objective for a stabili-
sation task [42]. More recently, pixel-based objectives such
as masked autoencoding (MAE) [36] and augmentation [16,
12] have been explored. Other approaches use contrastive
learning, maximise the similarity of unimodal visual and
tactile representations from the same timestep [6]. Others have
proposed tactile-specific objectives, such as predicting the
presence of contacts [24, 5]. Like [42], we identify dynamics
as a promising objective for tactile information and are the
first to study multi-step tactile dynamics prediction in RL.
Unlike [42, 16, 12, 36, 6], we focus on learning from simple
binary contacts.

Tactile-tailored RL. Tactile interactions are both important
and sparse. As a result, some works have explored how aspects
of the RL setup can be modified to better leverage tactile
input. [43] propose to increase the sampling probability of
contact-rich episodes in off-policy algorithms. [16] propose
tactile gating, in which a tactile encoder is only updated if
there is contact. In the space of tactile-based on-policy RL,
we are the first work to modify the dataset the self-supervised
objective is trained on from the typical on-policy rollout.

VII. LIMITATIONS

The primary limitation of our work is the lack of real-world
robot experiments which is a natural direction for future
work, but hope our choice to study binary tactile activations
greatly minimises the potential sim2real gap. We also note
that training self-supervised agents increases computation
time compared to RL-only. The effect is less noticeable for
reconstruction, but becomes more dramatic the higher the
value of n f in forward dynamics. In addition, a limitation of
using a separated auxiliary memory is that more memory is
required. Regarding generalisation, we would expect to see
similar results if our approach is applied to other environment
domains (e.g., robotic locomotion).

VIII. RESULTS AS REAL-WORLD METRICS

Figure 6 shows the average number of seconds it takes
the agent to locate the object within different tolerances.
The distance d is measured between the Franka end-effector
(imaginary fixed frame in the center of the parallel-jaw
gripper) and the object center. While the performance between
a proprioceptive and proprioceptive-tactile agent is similar for
a d = 3 cm threshold, the benefits of tactile data become more
pronounced with smaller tolerances. The relative performance
between SSL objectives is consistent except for d = 0.05 cm,
where the tactile dynamics objective is on average the fastest.
Figure 7 shows learning through the number of bounces
the agent achieves in 10 seconds, and Figure 8 through the
number of complete Baoding rotations achieved. Due to the
overlapping performance distributions in Baoding, we provide
alternative figure versions with only a subset of runs and/or
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Fig. 5: Real-world metrics. Maximum (shaded) and maximum of mean (bold) across seeds.

no bad seeds. Across all seeds, from Figure 8 (bottom left) we
can see applying tactile reconstruction or full dynamics self-
supervision approximately doubles the number of complete
rotations achieved.
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IX. FUTURE TACTILE STATE PREDICTION ANALYSIS

To understand how well MLPs can model the forward
dynamics of tactile interactions, we provide various classi-
fication metrics throughout training (Figure 9) and spatio-
temporal rollout visualisations of trained Bounce and Baoding
agents (Figures 10 and 11). We can compute metrics like
recall and precision because tactile reconstruction was for-
mulated as classification (rather than regression), but unlike
typical supervised learning the performance does not increase
monotonically because of the nonstationary data distribution.
We perform this analysis on agents trained with the tactile
dynamics objective since they were specifically trained for

future tactile prediction. This analysis could be done on
agents trained with full dynamics, but would require learning
a separated tactile decoder. Finally, due to the large proportion
of 0s to 1s, we found it necessary to apply a positive weighting
in the binary cross entropy loss of pc = 10 across all classes
(activation regions) due to tactile data imbalance.

Overall, we were surprised how robust the performance
remained n f timesteps into the future (evidenced by how
difficult it is to distinguish between the timesteps in Figure 9).
This suggests that the multi-step dynamics objective was very
effective at encoding information relevant for future state
predictions. Moreover, the rate of missed contacts was <1%
throughout training for both Bounce and Baoding, which
we attribute to the positive weighting applied. Interestingly,
despite the agent having access to the 3 last tactile states
that would form the first 3 tactile states of the prediction,
some of these states were not always perfectly “copied”
over (e.g., s5, s11, and s12 in Bounce). This highlights that
the states are not merely being ‘memorised’, but being
represented in some (imperfect) way. For future work, we
believe dynamically updating the positive weighting would
be beneficial to reflect the nonstationary training distribution.
Additionally, our implementation applied the same weighting
to each activation region, but some regions are much more
active than others (e.g., compare palm to pinky in Figure 11),
and this discrepancy should be accounted for.

For Bounce, tactile interactions are increasingly sparse
(e.g., compare Figures 10 and 11). Thus the metrics we
were most interested in were true positive rate (proportion
of contacts caught) and false negative rate (proportion of
contacts missed). True positive rate (TPR) decreased from
∼99% to 90% throughout training, which we attribute to
increased difficulty predicting the landing sites of a bouncing
ball. The proportion of contacts that were missed (FNR)
was surprisingly low throughout training, converging to ∼
0.2%. Fascinatingly, from the no-contact state s7, the decoder
correctly anticipates contact in the next state (albeit in the
wrong locations, however two predictions are just 1 timestep
early). This result suggests that some form of object position
information is being encoded.

For Baoding, the frequency of tactile interactions remains
high throughout learning, thus all metrics are of relevance.
The proportion of contacts that were correctly detected was
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Fig. 8: Number of complete Baoding ball rotations when each ball makes a full rotation in 10 seconds. Left: The distribution
across all seeds. Right: The distribution across seeds that learned at least 1 rotation. Top: All experiments. Bottom: A subset
of experiments.

∼99%, which is very high. Similarly to Bounce, very few true
contacts were missed (FNR), and the false positive rate was
relatively high at ∼15%. The accuracy remained at >96%
for majority of training. Also similarly to Bounce, some of
the false positive predictions (e.g., in states s10,s11) are just
one-step too early. Finally, across all metrics in Figure 9,
we can see negative performance spikes at fixed intervals
throughout learning that are not present for Bounce. This is
discussed in the next section.

X. MDP

We use a physics simulation frequency of 120 Hz across
all environments with a control decimation of 2. This means
the agent receives observations and computes actions at 60
Hz, because the same action is applied twice in the physics
engine. The default static and dynamic friction for robots and
objects was set to 1.0.

A. Observations

A summary of the different types of observation is shown
in Table I. Each environment uses a stack of observations ot
to form the state st (16 for the Franka Find environment, 4 for
the Shadow environments). We apply input preprocessing as
follows: joint angles θ are normalised between [-1,1]. Joint
velocities ˙theta are scaled down by a scalar (0.33 for Franka,

0.2 for Shadow). The norm of each 3-dim normal force vector
is clamped between [0, MAX], and normalised between [0,1].
The value of MAX was chosen to be 20N for Franka and
30N for Shadow.

TABLE I: Observation spaces across environments.

Symbol Description Find Bounce Baoding
f normal forces 2 17 17
a last action 9 20 20
θ joint angles 9 24 24
θ̇ joint velocities 9 24 24
w gripper width 1

xee EE position 3
qee EE quaternion 4
ot timestep observation 37 85 85
st stacked state (S×ot) 560 (16ot ) 340 (4ot ) 340 (4ot )

We retrieve the forces through Isaac Lab’s
ContactSensor class, which returns the net contact force
acting on a given rigid body1. To mimic real-world tactile
sensing and make the task more challenging, we registered
two ‘plate-like’ bodies to atop the Franka fingers to act as
contact sensors (Figure 12a). With this setup, the sensors
would only register forces that resulted from collision with
these bodies, which is only possible from the object or other

1https://isaac-sim.github.io/IsaacLab/main/source/overview/core-
concepts/sensors/contact sensor.html
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Fig. 10: Spatio-temporal visualisation of 1-step predicted future tactile states of a Bounce agent trained with the tactile
dynamics SSL objective. The state s is comprised of 4 observations, and each column corresponds to the same observation.
The sigmoid activation of the tactile prediction is displayed with varying opacity (e.g., less confident is lighter blue).

finger, and not the ground. Since the Shadow Hand was
fixed in midair we let each link become a sensor, resulting
in 17 sensors (Figure 12b).

B. Actions

Both robots are joint position controlled, with dimensions
9 and 20 for the Franka and Shadow Hand respectively. The
Shadow Hand is underactuacted, with coupled distal and
proximal joints like in humans (2 wrist + 5 thumb + 3 index
+ 3 middle + 3 ring + 4 pinky = 20).

C. Rewards

The rewards for each environment step are given by the
sum of the different terms each multiplied by the given scale.
For enhanced value function learning, we track a running
mean and variance for normalising the returns and values in
the PPO update.

For Find there is one reward term rdist that grows as
distance between the object and end-effector decreases.

For Bounce, the reward is given by rair + rbounce+ r f all . To
aid initial exploration, the agent is rewarded proportionally to
number of time steps since last contact, rair. A bounce event
is defined as there being contact, then no contact, and then
contact again, for which the agent is rewarded with a bonus
rbounce. The fall penalty is applied if the object is more than
24 cm from a fixed central position.

For Baoding the reward is given by rdist1 +rdist2 +rrotation+
r f all . Our original approach was to maximise the xy angular
velocity of the vector connecting the two balls which worked
well, but sometimes the agent came up with creative strategies
that no longer resembled the original Baoding task. Thus,
we reformulated the reward around two fixed target poses
(Figure 13). When the centers of both balls were within 1.0
cm of the given target centers, the targets switched and the



Fig. 11: Spatio-temporal visualisation of 1-step predicted future tactile states of a Baoding agent trained with the tactile
dynamics SSL objective. The state s is comprised of 4 observations, and each column corresponds to the same observation.
The sigmoid activation of the tactile prediction is displayed with varying opacity (e.g., less confident is lighter blue).

(a) Franka (b) Shadow Hand

Fig. 12: Contact sensor configuration across robot embodi-
ments.

agent receives a bonus reward rrotation. We also needed to
use two dense ball-center-to-target distance rewards rdist1 ,
rdist2 to aid exploration in the beginning . This approach
better constrained the ball positions and stabilised policies

for comparing methodologies. The fall penalty is applied if
the distance between the balls exceeds 15 cm.

D. Reset

Episodes can be terminated by a failure state, or truncated
by a time limit. The Find environment episode length is T =
300 timesteps (5s), and Bounce and Baoding environments are
T = 600 timesteps (10s). The Bounce and Baoding episodes
can be terminated early if the balls fall out of the hand,
measured by a distance. At the beginning of each episode,
the Franka joint angles are randomised up to ±7◦ and the
Shadow joint angles are randomised upto ± 20%. The ball
in Find is randomised to any position on the 20cm × 20cm
plate. The Bounce ball and Baoding balls are randomised by
±1 cm and ±0.5cm respectively along the global xyz axis .



TABLE II: Reward components across environments.

Symbol Description Equation Scale Find Bounce Baoding
rdist distance to target 1− tanhdtarget/0.1 1, 0.1 ✓ ✓✓
rair time without contact +1 0.01 ✓

rbounce successful bounce +1 10 ✓
rrotation successful rotation +1 if d1&2 < 1.0cm 10 ✓

r f all fall penalty -1 if d > dmax 10 ✓ ✓

Fig. 13: Baoding: When both balls are within 1cm of their virtual targets (shown as smaller balls), the targets switch.

XI. NETWORK ARCHITECTURES

Encoder. The encoder e is a 3-layer MLP with dimensions
st → 1024→ 512→ 256→ zt . Layer normalisation and ELU
activations are applied after each layer.

Policy. The policy π is a 3-layer MLP with dimensions
zt → 128→ 64→ nactions→ at . ELU activations are applied
after the first two layers. The output layer activation is tanh
for Find and identity for Bounce and Baoding.

Value function. The value function v is a 3-layer MLP with
dimensions zt → 128→ 64→ 1→ Vt . ELU activations are
applied after the first two layers. The output layer activation
is identity.

Reconstruction. The decoder d is a 3-layer MLP. The
full reconstruction decoder has dimensions zt → 512 →
512 → len(st) → ŝt . The tactile reconstruction decoder
has dimensions zt → 512→ 512→ len(stact

t )→ ŝtact
t . ELU

activations are applied after the first two layers. The output
layer activation is sigmoid for tactile predictions, and identity
for proprioception predictions.

Forward dynamics. The forward model f is a 3-layer
MLP with dimensions (zt ,at)→ 512→ 256→ 256→ ẑt+1,
with ELU activations after the first two layers. The projector
is a 2-layer MLP with dimensions ẑt+i→ 256→ 256→Li
with an ELU activation after the first layer. The target encoder
eT is identical to e, but updated according to Equation 5 with
α = 0.01.

θeT ← (1−α)θeT +αθe (5)

XII. TRAINING DETAILS

The combined loss L is the summed policy, value, entropy,
and auxiliary loss.

RL. We use separate Adam optimisers for the policy, value,
and encoder. The policy, value, and encoder optimisers share
a constant learning rate lr. The gradient norms of the policy,
value, and encoder networks are clipped at 1.0.

SSL. The same Adam optimiser is used to optimise the
encoder and auxiliary-related networks (e.g., decoder d,
forward model f , nonlinear projector p) with constant learning
rate lraux. The gradient norms are not clipped: this seemed
to degrade performance. The formulations of Laux for the
different objectives are shown in Section 3.2.

XIII. HUMAN CAPABILITIES

Find. Replicating the environment in real life and testing
with one human subject, the average time to find and grasp
the object across 10 trials was 2.1 seconds.

Bounce. The most tennis ball touches using the hand
in one minute is 353, and was achieved by Manikandan
Thirumaniselvam in India on 4 February 2023 2. This
translates to 353/6∼ 58 bounces in 10 seconds. We note the
properties of our ball (30g, 70mm diameter) are different to
a tennis ball (∼ 58g, 67mm diameter), but would expect to
see similar results.

Baoding. The fastest demonstration we could find online
achieves 13 rotations in 10 seconds3. We believe the properties
of our Baoding balls and the ones in the video are identical
(55g, 1.5 inch diameter) since we possess the same ones and
modelled our simulated ones off them.

2Bounce record: https://www.guinnessworldrecords.com/world-
records/590513-most-tennis-ball-touches-using-the-hand-in-one-minute,
Bounce video: https://www.youtube.com/watch?v=ORiHY0MwT4A

3Baoding video: https://www.youtube.com/shorts/x-ns-auc098



XIV. HYPERPARAMETER TUNING

We carefully tuned all our experiments to give each
agent the best shot. For fairness, we followed the same
hyperparameter tuning recipe for each individual experiment
(3 environments × 7 experiments = 21 sweeps). We use the
Optuna library [2] with the TPE sampler (5 startup trials)
and no pruner. We wait for each sweep to reach 20 complete
trials (some hyperparameter combinations lead to policy/value
NaNs which are terminated early). The hyperparameters and
possible ranges we tested are provided in Table III, with the
optimised values in Table IV. We did not sweep over the
following hyperparameters: discount factor γ = 0.99, value
loss scale cv = 0.1, gradient norm clip 1.0, value clip 0.2,
ratio clip 0.2.

TABLE III: Tunable hyperparameters and ranges for each
experiment.

Hyperparameter Symbol Tunable values
Rollout R {16,32,64}

Minibatches mb {4,8,16,32,64}
Learning epochs le {4,8,16,32}

Learning rate lr [10−5,10−3]⊂ R
Entropy loss scale cent {0,0.05,0.1}

Auxiliary learning rate lraux [10−5,10−3]⊂ R
Auxiliary loss weight caux [10−3,10]⊂ R

Dynamics sequence length n f +1 {2,3,4,10}
Auxiliary memory size Nrollouts {2,3,4}

TABLE IV: Tuned hyperparameters for each experiment.
Environment Experiment R mb le lr cent lraux caux n f Nrollouts

Find PPO(prop) 32 16 8 1.06 ×10−5 0
PPO(prop-tactile) 32 16 8 1.06 ×10−5 0

+full recon 64 64 4 7.39 ×10−5 0 5.91 ×10−5 0.0023
+tactile recon 64 16 8 1.36 ×10−5 0.1 2.55 ×10−5 0.004477

+full dynamics 64 64 4 1.15 ×10−5 0.1 1.55 ×10−4 0.0062 2
+tactile dynamics 64 64 4 2.32 ×10−5 0 1.57 ×10−4 0.0024563 4

+full dynamics+Nrollouts 64 64 4 1.15 ×10−5 0.1 3.81 ×10−5 0.1364 3 3
Bounce PPO(prop) 32 32 4 5.93 ×10−5 0

PPO(prop-tactile) 16 8 4 3.21 ×10−4 0
+full recon 64 16 16 1.88 ×10−4 0 2.77 ×10−5 0.05669

+tactile recon 64 32 16 4.65 ×10−5 0 5.13 ×10−5 0.00384
+full dynamics 32 64 4 1.50 ×10−4 0 4.53 ×10−5 0.8462 10

+tactile dynamics 64 32 8 1.22 ×10−4 0.05 1.64 ×10−4 0.23547 10
+full dynamics+Nrollouts 32 64 4 1.50 ×10−4 0 1.16 ×10−4 0.19954 4 2

Baoding PPO(prop) 32 8 4 9.96 ×10−5 0.05
PPO(prop-tactile) 32 4 8 2.02 ×10−4 0.05

+full recon 16 32 4 3.68 ×10−4 0 5.18 ×10−5 0.058866
+tactile recon 64 32 8 3.61 ×10−4 0 1.00 ×10−5 0.2707

+full dynamics 32 16 4 5.47 ×10−4 0 2.87 ×10−4 3.686 2
+tactile dynamics 32 16 8 2.08 ×10−5 0.05 1.53 ×10−4 0.04839 3

+full dynamics+Nrollouts 32 16 4 5.47 ×10−4 0 1.67 ×10−5 1.6349 4 4

XV. LATENT TRAJECTORY ANALYSIS

Figures 14, 15, and 16 show a two dimensional latent
representation of a single episode across all environments.
Trajectories for RL-only and a subset of self-supervised agents
are shown (tactile reconstruction, full dynamics, and tactile
dynamics). The 256-dim zt latent vector at each timestep was
reduced using 2-component Principal Component Analysis
(PCA). Note that the tactile activations shown are only the
sum of activations in the current observation, and does not
sum the history.

Baoding. The ring-like trajectory of the RL-only agent
illustrates the repeated motion the agent develops. There are
two tactile peaks on opposite sides of the ring, indicating
symmetry in contact activations between half-rotations. The
trajectory of the tactile reconstruction agent is quite different
(heart-shaped, diffuse). This shows each rotation is slightly

different, and there is now asymmetry between the contact
activations of half-rotations. From rendering the policy, the
gait is smooth like the dynamics agent but keeps the balls
close together like the RL-only agent. The trajectory of the
full dynamics agent is again ring-like, but with tighter bounds
than the RL-only agent. Like the tactile reconstruction agent,
there is contact activation asymmetry between half-rotations.
Finally, the tactile dynamics agent trajectory appears to be a
blend of the dynamics and tactile reconstruction trajectories.

Bounce. The latent trajectories of the self-supervised agents
are highly different to the RL-only agent. From the trajectory
with the time colourbar, we can see that the sequential latent
states of the RL-only agent are highly discontinuous and far
apart (e.g., yellow), and the agent repeats the same motion
with high precision. There are two regions with non-zero
tactile observations of upto 6 activations, which is understood
by the ‘safe’ gait of raising the index and pinky finger to
stabilise the ball. The gait changes completely for the self-
supervised agents, which predominately uses 1 or 2 contacts.
Sequential latent states are still spread out in various regions,
but these regions are much more diffuse than in the RL-only.

Find. It is clear the self-supervised agents find the object
faster by observing the trajectories colourised by time.
Otherwise, the shape of the latent trajectories is not drastically
different between RL-only and self-supervised agents. A
distinction between 1 and 2 tactile activations appears in
the dynamics agent trajectory.
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Fig. 14: Latent episode trajectory (PCA) of the best Baoding agents. Left: Samples colourised by time. Right: Samples
colourised by summed tactile activations of the last tactile observation otact

t .
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Fig. 15: Latent episode trajectory (PCA) of the best Bounce agents. Left: Samples colourised by time. Right: Samples
colourised by summed tactile activations of the last tactile observation otact

t .
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Fig. 16: Latent episode trajectory (PCA) of the best Find agents. Left: Samples colourised by time. Right: Samples colourised
by summed tactile activations of the last tactile observation otact

t .
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