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Abstract—Vision-Based Tactile Sensors (VBTS) offer high spa-
tial resolution but exhibit limitations in capturing high-frequency
dynamic events, such as slip and texture, which consequently
constrains robotic dexterity. To overcome this limitation, we pro-
pose a multimodal tactile sensor system that augments a standard
VBTS with a microphone for Fast-Adapting (FA) feedback. The
entire system is self-contained on a single NVIDIA Jetson Orin
NX board and is operated by a unified ROS 2 node. We introduce
a real-time, camera-triggered synchronization method that fuses
high-resolution visual data with corresponding high-frequency
auditory data, publishing the synchronized information as a
unified tactile message. Experimental validation demonstrates
two primary advantages. First, the system can detect not only
static contact events through its internal camera but also tran-
sient dynamic events via the integrated microphone. Second,
it successfully discriminates between different surface textures
by identifying their unique vibrational signatures, a capability
that is also crucial for detecting slip. This work presents an
accessible and efficient framework for acquiring rich, dynamic
tactile information, thereby advancing the development of more
robust and dexterous robotic manipulation.

Index Terms—Tactile sensor, multimodal sensing system, real-
time data processing

I. INTRODUCTION

Tactile sensing is fundamental to how humans perceive and
interact with their environment, and equipping robots with
analogous capabilities is critical for achieving dexterous ma-
nipulation [1]. While early tactile sensors, such as capacitive or
resistive types, could detect basic contact, they were hampered
by manufacturing complexities and low spatial resolution,
limiting the richness of the contact information they could
provide [2].

Vision-Based Tactile Sensors (VBTS) have emerged to
address these shortcomings by utilizing internal cameras to
generate high-resolution tactile data from physical deforma-
tions. A prominent example is the TacTip [3], which features
a soft, deformable skin with an internal array of pins. As the
sensor makes contact with an object, an integrated camera
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captures the displacement of these pins to produce high-
resolution tactile feedback. The open-source nature of plat-
forms like TacTip has fostered widespread adoption, providing
researchers with an accessible, low-cost tool for modification
and experimentation, thereby significantly advancing robotic
tactile research [4].

Human skin perceives complex tactile information through
two types of receptors: slow-adapting (SA) receptors, which
detect sustained pressure and shape, and fast-adapting (FA)
receptors, which detect subtle vibrations and texture [5].
Vision-based sensors primarily mimic SA receptors but largely
fail to capture FA information. The mean operating cycle of
cameras utilized in VBTS is estimated to be between 30 and
60 times per second. While this is sufficient to perform the
role of human skin’s SA receptors, it is inadequate for the
response speed required to perform the role of FA receptors,
which must detect rapid changes exceeding hundreds of hertz.
Consequently, robots demonstrate a notable vulnerability in
dynamic interactions, failing to perceive transient vibrations
upon contact with an object’s surface or the rough texture
of the surface. In this study, we propose the development
of a multimodal tactile sensor that integrates heterogeneous
sensors to perform the roles of both SA receptors and FA
receptors to address these limitations. Specifically, it integrates
the high-resolution spatial information provided by existing
VBTS with the vibration information detected by a high-
sensitivity microphone.

II. RELATED WORK

VBTS research has achieved significant progress in recent
years. TacTip offers straightforward interpretation of feature
points by monitoring the displacement of its internal pin
array, thus establishing itself as a prevalent platform within
academic circles due to its extensive compatibility with 3D
printing technology [3], [4]. Operating on a different principle,
GelSight demonstrates the ability to optically track continuous
deformations of a translucent gel surface, thereby reconstruct-
ing highly precise 3D surface information, which shows strong
performance in analyzing fine textures [6]. In addition to
these, various sensor forms have been proposed, such as
research increasing sensor form freedom using flexible optical
waveguides [7] and OmniTact, which detects contact across



Fig. 1. Hardware components of the multimodal tactile sensor. (A) A
microphone serving as the Fast-Adapting (FA) receptor. (B) The TacTip, which
functions as the Slow-Adapting (SA) receptor. (C) The microphone is attached
to the backside of the TacTip. (D) The NVIDIA Jetson Orin NX board for
real-time data integration.

entire curved surfaces [8], thereby expanding the possibilities
of vision-based tactile sensing.

Previous attempts have been made to recognize the im-
portance of FA receptors and implement them. Examples
include the attachment of microphones to robotic skin for the
classification of objects by contact sounds [9] and research
utilizing piezoelectric elements to detect impacts and slips at
high speeds [10]. While these studies clearly demonstrated the
potential of multimodal sensing, they were often systems built
for specific purposes, lacking versatility or integration with
widely used open-source platforms. Recently, Meta AI devel-
oped DIGIT 360, a multimodal VBTS that applies principles
similar to GelSight while additionally detecting vibrations or
inertia [11]. However, given its status as a commercial product,
it is challenging to modify or extend its internal hardware or
software for research purposes.

III. MATERIALS AND METHODS

A. System Overview

Proposed multimodal tactile sensing system, shown in
Fig. 1(D), is designed as a standalone system with all func-
tions integrated on a single NVIDIA Jetson Orin NX board
computer. The primary objective of this system is to fuse, in
real-time, the high-resolution spatial information provided by
TacTip (Fig. 1(B)) with the high-frequency vibration informa-
tion detected by a microphone (Fig. 1(A, C)).

The system’s software is a modular framework built upon
ROS 2. It is designed to autonomously acquire and precisely
time-synchronize data from heterogeneous sensors, which is
then disseminated as a unified, readily-utilizable topic. This ar-
chitecture ensures reproducibility, promotes scalability, and is
intended to lower the barrier for adoption by other researchers.

B. Hardware Components
All hardware components are directly interfaced with the

NVIDIA Jetson Orin NX board(SBC) (Fig. 1(D)). The detailed
specifications for each component are as follows.

a) Host System: The NVIDIA Jetson Orin NX 16GB
board was utilized as the central processing unit of the entire
system. This board offers the potential to run future on-device
machine learning models through its powerful integrated GPU.
It provides an optimal environment for directly connecting
sensors without a separate controller, featuring both USB and
GPIO headers.

b) Vision Sensor: The primary tactile sensing component
is a vision-based sensor derived from the open-source TacTip
design, which measures contact shape and pressure distribu-
tion. Internally, a standard USB webcam captures the sensor’s
deformation at a 1280×720 resolution and 30 Hz refresh rate,
streaming the data to the single-board computer (SBC) via its
USB port.

c) Auditory Sensor: An Adafruit SPH0645 I2S MEMS
Microphone was utilized to detect subtle textures and slippage
vibrations. The high-sensitivity microphone establishes a di-
rect connection with the SBC’s 40-pin GPIO header through
the utilization of the I2S communication protocol, thereby
facilitating the acquisition of audio streams at an elevated
sampling rate of 44.1 kHz. The sensor was affixed to the
base of the TacTip, meticulously designed to detect vibrations
transmitted to it.

C. Software and Data Synchronization
The software framework, as shown in Fig. 2, has been

developed using ROS 2 Humble Hawksbill, which operates
on the Jetpack 6.2, Ubuntu 22.04 based operating system. All
data acquisition and integration processes within the system
are efficiently handled within a single ROS 2 node that acts
as the Sensor Integration Driver Node. The data processing
pipeline of this driver node is designed as follows:

a) Asynchronous Microphone Data Buffering: A dedi-
cated thread within the node is responsible for the collection
of microphone data. This particular thread has the capacity
to continuously read audio data in real-time at a 44.1 kHz
sampling rate from an I2S microphone that is connected via
GPIO. The read audio data is sequentially stored in an internal
buffer.

b) Camera-Triggered Data Synchronization and Publish-
ing: The node’s primary loop functions in accordance with
camera frames and employs a trigger-based synchronization
method, as outlined subsequently. Initially, the primary loop
acquires a new image frame from the USB camera. This
frame acquisition action serves as the reference signal for
the entire data integration process, thereby functioning as the
trigger. Upon successful frame reading, the frame’s timestamp
is recorded. Subsequently, the system retrieves all audio data
accumulated in the microphone data queue up to that point as
a single data chunk.

#tactile_msgs/msg/MultimodalData.msg
std_msgs/msg/Header header



Fig. 2. Data acquisition and synchronization pipeline

sensor_msgs/msg/Image image
audio_common_msgs/msg/AudioData audio

The completed MultimodalData.msg message is ultimately
published to a single topic named /tactile/multimodal, enabling
immediate utilization by other applications. This trigger-based
synchronization method inherently addresses variations in data
processing speeds between the two sensors. This approach
guarantees data integrity by aligning data to a definitive
reference point: the camera frame.

IV. EXPERIMENTS AND RESULTS

In order to validate the proposed multimodal tactile sensor
in this study, two experiments were conducted. The over-
arching objective of the present series of experiments is to
demonstrate that dynamic tactile events, which are difficult
or impossible to detect using visual information alone (i.e.,
the SA receptor), can be successfully captured through acous-
tic/vibration information (i.e., the FA receptor). The initial
experiment centered on the capacity to discern instantaneous
contact and separation occurrences. The subsequent experi-
ment examined variations in vibration patterns during slip
events, contingent on the nature of the underlying surface
material. All data were collected in real-time from the /tac-
tile/multimodal topic via the previously described system.

A. Experiment 1: Transient Contact Detection

a) Objective: The objective of this experiment is to com-
pare the temporal precision of the vision-only and multimodal

Fig. 3. Results from the transient contact (tap) detection experiment. Subfig-
ures (A) illustrate the sensor’s state at the moment of initial contact (pressing),
while subfigures (B) illustrate the state at the moment of separation (release).

methods in detecting a transient tap event.
b) Procedure: With the sensor firmly secured, the exper-

imenter repeatedly tapped its center by rapidly applying and
releasing pressure. Throughout this action, image and audio
data were recorded synchronously.

c) Results and Discussion: As demonstrated in Fig. 3,
the multimodal system exhibits superior temporal resolution in
detecting a rapid tap-and-release event. The visual data from
the internal camera (bottom row) shows a nearly identical
pattern of pin deformation at both the moment of contact
(Fig. 3(A)) and release (Fig. 3(B)), making it challenging
to distinguish between these two transient events from the
images alone. In stark contrast, the auditory data (top row)
provides unambiguous temporal cues. A sharp, high-amplitude
spike in Fig. 3(A) corresponds to the initial impact, while a
second distinct spike in Fig. 3(B) precisely marks the moment
of separation. These results confirm that the microphone can
capture and differentiate transient events with high fidelity—a
capability crucial for robust manipulation that remains a sig-
nificant challenge for vision-only tactile sensors.

This experiment highlights a key advantage of the proposed
system. Whereas conventional vision-based sensors are limited
to interpreting dynamic events as a series of state changes
between frames, our multimodal sensor can instantaneously
detect such events as discrete occurrences within a single
data frame using the auditory signal. This capability has the
potential to significantly reduce system latency and improve
reaction times in real-time robotic control.

B. Experiment 2: Surface Texture Discrimination during Slip

a) Objective: The objective is to verify whether the
system’s audio data can distinguish between different surface
textures during a slip event, particularly when those surfaces
are indistinguishable by visual information alone.

b) Procedure: Data was collected from three surfaces
prepared with distinct textures: a smooth surface, 80-grit
sandpaper, and 2000-grit sandpaper. For each surface, data
acquisition was performed by applying pressure with the
sensor tip.



c) Results and Discussion: The value of the proposed
multimodal approach for texture discrimination is underscored
by the experimental results. Visually, the data from the TacTip
sensor was nearly indistinguishable across the three surfaces
during a slip, as shown in Fig. 4(B). While these images
successfully confirmed physical contact, they lacked sufficient
information to discern the surface texture.

In stark contrast, the auditory data, shown in Fig. 4(A),
captured the distinct physical characteristics of each surface
with high fidelity. The audio stream exhibited unique vibra-
tional signatures corresponding to each texture: the smooth
surface produced a low-amplitude baseline signal, while the
80-grit (coarse) and 2000-grit (fine) sandpapers both generated
high-amplitude, high-frequency vibrations, each possessing a
signature pattern reflective of its specific texture.

Fig. 4. Comparison of multimodal sensor data when sliding over a smooth
surface, 80-grit sandpaper, and 2000-grit sandpaper. (A) The audio wave-
forms measured for each surface show unique vibrational patterns. (B) The
corresponding TacTip images, captured during the slip, show the sensor’s
deformation.

In conclusion, the auditory data provided unique ”vibra-
tional signatures” that successfully distinguished between sur-
face textures where vision-only methods failed. While the
sensor is sensitive to ambient noise, the distinct textural signals
are robust enough to provide essential information for material
identification and the refinement of robotic gripping strategies.

V. CONCLUSION

In this paper, we presented and validated a multimodal
tactile sensor that fuses a vision-based SA channel with a
microphone-based FA channel on a single, ROS 2-driven
embedded platform. Our experiments confirm that this system
effectively captures dynamic tactile events, demonstrating two
key advantages over vision-only methods. First, it achieves
superior temporal resolution by detecting transient contact
events from the auditory signal within a single data frame,
overcoming the multi-frame analysis required by vision-alone
approaches. Second, it successfully discriminates between
visually-indistinguishable surfaces by identifying their unique
vibrational signatures in the audio data. These capabilities

provide novel opportunities for robots to identify materials
and adapt their interaction strategies in real-time.

However, our experimental process also revealed a key lim-
itation: the high sensitivity of the microphone, while beneficial
for capturing contact data, also makes it susceptible to ambient
noise from sensor movement and the surrounding environment.
This noise can potentially corrupt the pure contact signal.
To address this, our immediate future work will focus on
implementing a differential sensing approach. This involves
integrating a secondary, reference microphone to specifically
measure and subtract ambient vibrations, thereby isolating the
true contact signal. This enhancement is expected to yield
more robust multimodal data, contributing to the overarching
goal of achieving human-like robotic dexterity.
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