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Abstract— Human motion capture is a scalable data source for
dexterous manipulation, but direct retargeting often fails due to
embodiment mismatches and missing physical interactions. We
present DexRefine, a framework that learns task-space residual
actions to refine human motion into physically feasible robot ac-
tions. When deployed on a physical robot, DexRefine successfully
refines synthetic Human-Object Interaction (HOI) trajectories
in real-time, achieving robust sim-to-real transfer. Experiments
on a challenging “’bottle reorientation” task show our method
substantially outperforms a baseline, reducing Object Trajectory
and Orientation Error (OTE/OOE) by approximately 52% and
50%, respectively, while also attaining a significantly higher
success rate. Our Video Link: https://youtu.be/6SmPZB10zd M,

I. INTRODUCTION

Recent advances in artificial intelligence have elevated
imitation learning (IL) [1]-[6] to a leading paradigm for
robotic dexterous manipulation, enabling versatile control of
high-degree-of-freedom (DoF) robot hands. However, collect-
ing the large-scale, high-quality demonstrations required for
this approach remains prohibitively expensive: teleoperation
systems demand specialized hardware and extensive operator
time. To alleviate this burden, researchers are increasingly
turning to publicly available human motion-capture (mocap)
and video datasets [7]-[9], which can be mined at scale with
minimal overhead.

However, directly leveraging human mocap data on robots
remains challenging. Previous retargeting algorithms [10]-
[12] only partially bridge the embodiment gap between the
human and the robot. Furthermore, the inherent noise and
coarse resolution of mocap fail to capture the fine-grained de-
tails of human dexterity, often yielding suboptimal trajectories
and task failures. Moreover, camera-based mocap and pose-
estimation pipelines [13]-[15] capture only the kinematic
relationship between the hand and the object, providing no
information about underlying physical interactions such as
contact forces.

To compensate for these missing physical dynamics, recent
studies augment coarse mocap priors with simulation-based
reinforcement learning (RL), optimizing for residual or
direct joint-space actions under object-centric reward signals
[16]-[21]. Closest to our work, Chen et al. [16] adopt a
hierarchical IL + RL framework in which imitation generates
wrist trajectories, and a low-level RL policy refines them
in task space while producing the corresponding hand-joint
actions. However, full joint-space exploration for hand motion
generation remains a significant burden for reinforcement
learning.

Building on this perspective, we present DexRefine, a
framework that refines human motion into physically feasible
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Fig. 1: DexRefine can refine coarse and unsafe kinematic HOI
mocap data into physically feasible robotic actions, enhancing
both dexterity and safety.

robot actions using task-space residual reinforcement learning.
Our approach refines the robot’s wrist and fingertip poses
in the task-space by the RL policy trained to maintain the
object trajectory in alignment with a reference trajectory.
We validated our method using a Human-Object Interaction
(HOI) mocap dataset for a “bottle reorientation” task. Our
experiments reveal two key findings: (1) Learning task-space
residuals is significantly more stable and sample-efficient than
training the robot directly in joint space; and (2) Compared
to a baseline that relies on simple inverse-kinematics(IK)-
based retargeting, DexRefine effectively refines synthetic HOI
trajectories, achieving a high success rate while reducing
object tracking error by about half.

II. METHOD

Fig. 2] provides an overview of our proposed framework.
In the following sections, we describe each component in
detail.
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Fig. 2: Overview of DexRefine Framework: (a) A refinement policy, Tefine, 1S trained via an asymmetric actor-critic
RL method to refine augmented human motions to feasible robot actions. To enable sim-to-real transfer, a student policy
reconstructs a teacher’s latent vector encoding object physics and binary contact states using only proprioceptive history, (b)
At deployment, a Diffusion Policy generates a coarse HOI trajectory conditioned on the initial object pose, which Tefine then

refines into an executable robot action.

A. HOI Mocap Data Collection

We collected HOI motion data using a Manus glove and a
multi-view motion capture system in the same environment
as [22]. For the “bottle reorientation” task, 89 demonstration
trajectories were collected under randomized object positions.
Each trajectory contains the fingertip positions py € R?
measured in the wrist frame, the object 6D pose (R,,t,) €
SE(3) defined in the world frame, and the wrist 6D pose
(Ry,tw) € SE(3) also defined in the world frame. The
dataset is:

p={r =R, ¢, R, )" |V 1
- T = (pfa 07 Yo? w w)t:l 9 ()

=1

where N = 89 and T is the trajectory length.

B. Task Space Residual Action

The primary objective of our DexRefine Policy is to refine
the coarse human motion into physically feasible robot actions.
At each time step ¢, the policy Tefne OUtputs a raw control
signal u;. To stabilize training and prevent abrupt changes,
this signal is processed through several steps. First, u; is
clamped element-wise to [—1,1] and then smoothed using
an exponential moving average (EMA) filter:

;= owy + (1 — a)ug_1, 2)

where we set the smoothing factor a = 0.8. This smoothed
signal U, is then used to incrementally update the residual
action Aay:

Aa; = Aa;_1 + sty At, 3)

where At is the policy inference interval and s is a component-
wise scaling factor (0.05 for wrist translation, 0.2 for wrist
rotation, and 0.05 for finger motion).

The residual action Aa; = (Aw,, Ahy) consists of the
residual wrist motion Aw; = (Avat, Atu,7t) and fingertip
translations Ah;, comprising an 18-DoF action space (Aa; €
R'8). To ensure physical feasibility, the cumulative residuals
are clamped within predefined ranges:

ADuyrist € [_0-17 0~1] m, Argyhg € [_4007 400]3
Apﬁnger € [—0.04, 0.04] m.

The final action is then computed by adding this residual
to the initial coarse action, a?nal = a; + Aa;. This task-
space command is mapped to joint-space targets ¢* using
inverse kinematics (IK); specifically, we employ an analytical
solver for the hand and a damped least-squares solver [23]
for the arm. Before execution by the low-level PD controllers,
the resulting joint trajectories are refined using quintic
interpolation to suppress jitter and ensure smooth tracking.
We optimized our policy using Proximal Policy Optimization
(PPO) [24]. Detailed reward formulation and training details
are provided in Appendix.

C. Sim-to-Real Transfer

To enable sim-to-real transfer of DexRefine policy, we
employ domain randomization, an asymmetric actor—critic
architecture, and a distillation strategy similar to [25]. The
privileged teacher policy has access to simulation-only
information, encoding object physics properties e; € R'®
(e.g., mass, pose, friction) and binary tactile signals from
object contact ¢¢ € {0,1}!'! into a 16-dimensional latent
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Fig. 3: The experimental setup in the real world.

vector z; = pu(et,ce). Since this privileged information
is unavailable at deployment, the student policy learns to
reconstruct this latent representation from proprioceptive
history. Specifically, a GRU-based [26] adaptation module ¢
processes a 30-step history of joint positions and previous
actions, X;_o9.; where x; = [q;;a;] € R*, to produce
its own latent vector z; = ¢(x;_29.¢). The distillation is
performed through an online DAgger [27], where the teacher’s
actor network is frozen and copied to the student. The student
policy is then trained to mimic both the teacher’s actions and
its latent vector by minimizing a weighted objective:

L=y — w3 + Az — 23, 4)

where u; is the teacher’s action and 0, is the student’s action.
We set the loss weights to A; = 0.1 and Ay = 1.0 to prioritize
accurate latent representation matching.

D. HOI Trajectory Synthesis for Deployment

In real-world applications, it is infeasible to provide pre-
captured HOI trajectories for every possible initial pose of an
object. To address this, we first expand the spatial distribution
of a collected set of 1,000 HOI demonstrations via data
augmentation: we randomly translate each trajectory in the
x—y plane, interpolate its start and end segments to match the
robot’s initial pose, and apply random z-axis rotations exploit-
ing the object’s axial symmetry. To overcome the remaining
limitation that a finite set of augmented trajectories cannot
cover all possible initial poses, we leverage this augmented
dataset to train a diffusion policy [1]. This policy is trained to
broaden the spatial coverage beyond the mocap distribution
and takes the current state s; = [0, q7, Wy, q}”, hy] to output
a one-step delta Aa; = [Aoy, r9, Awy, r}’, Ahy]. These
deltas, consisting of positional changes (Ao;, Aw;, Ah;) and
continuous 6D rotation parameters (r{,r;"), are recursively
accumulated to produce a full trajectory. As a result, the
policy can generate diverse and feasible HOI trajectories
across a wide range of initial object poses without requiring
explicit ground-truth motion for every case.

III. EXPERIMENTAL RESULTS

Our evaluation focuses on the following two key aspects:
Effectiveness of Task-Space Residual Actions: We inves-

tigate whether learning residual actions in the task space
(i.e., for the wrist and fingertips) achieves more efficient
and stable control compared to directly predicting actions in
the joint space, given the same task-space motion guidance.
Real-World Performance Comparison: We quantify the
extent to which DexRefine executes more physically feasible
motions than a standard Inverse Kinematics based retargeting
baseline, using object-conditioned human-object interaction
(HOI) trajectories generated by a diffusion model.

A. Experimental Setup

Our real-world setup (Fig. [3) consists of a Franka Emika
Panda arm equipped with a fully actuated 16-DoF robotic
hand [28] for dexterous manipulation. An external Intel
RealSense L515 RGBD camera observes the workspace. To
obtain the initial 6-DoF object pose in the robot base frame,
we use a two-stage perception pipeline. First, we perform
camera robot calibration to estimate the rigid transform
between the camera and robot’s base frames. Then, we
leverage FoundationPose [29] to estimate the object pose
in the camera frame. Composing the two transforms yields
the object pose in the base frame for each trial.

B. Residual Action in Task Space vs. Direct Action in Joint
Space

Under identical task-space guidance, we compare four
control configurations by combining wrist control (task-space
residual or direct joint-space) with fingertip control (task-
space residual or direct joint-space). We train each policy
for 5,000 iteration steps using 4,096 parallel environments
with the same seed and compare the final success rate. As
summarized in Fig. [4(a), task-space residual learning consis-
tently outperforms direct joint-space prediction. The optimal
configuration, using Cartesian residuals for both the wrist and
hand, yields the highest success rate at approximately 70%.
This is a dramatic improvement over using joint-space for the
wrist, which keeps the success rate below 15%. This finding
highlights that learning corrective actions in Cartesian space,
particularly for the wrist, is the most critical component for
success in this dexterous manipulation task.

C. Real-World Deployment Performance: DexRefine vs. IK
Retargeting

We evaluate the distilled student policy in ten real-world
trials, each with a random initial object pose. For each
trial, a diffusion model generates a synthetic human—object
interaction (HOI) trajectory conditioned on the initial object
pose, which serves as the reference motion. We compare
two controllers executing this same reference trajectory: (i)
Synthetic HOI + DexRefine, which refines the reference into
physically feasible robot actions, and (ii) Synthetic HOI + IK,
which directly retargets the reference using inverse kinematics.

Performance is measured by success rate and object trajec-
tory errors: Object Translation Error (OTE, m) and Object
Orientation Error (OOE, deg). In this evaluation, OTE/OOE
quantify reference-tracking fidelity—the translational and
rotational deviation between the executed object pose and
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Fig. 4: Action-space comparison and real-world object-pose errors: (a) task-space residual vs. direct joint-space (wrist &
fingertips), (b) per-episode Object Trajectory Error (OTE, m) over 10 real-world trials, (c) per-episode Object Orientation
Error (OOE, deg) over the same trials. (x denotes a failed episode and o denotes a successful episode.)

TABLE I: Real-world deployment: success rate and aggre-
gated object errors across 10 trials. OTE: object translation
error (m); OOE: object orientation error (degree).

Success °
Method Rate OTE (m) OOE (°)
Synthetic HOI +
DexRefine (Ours) 10/10 0.015 &+ 0.011  5.82 + 6.10
Synthetic HOT + 2/10 0.031 + 0.046 11.75 + 18.98

IK

the diffusion-generated reference at each time step. Errors
are averaged per episode and then aggregated across all ten
trials. We define task success as placing the object in a stable,
upright position near the target location. DexRefine’s task-
space residual actions are designed to reduce these tracking
errors online via small wrist/fingertip corrections.

As shown in Table [I] and Figs. f[b) and (c), DexRefine
markedly outperformed the IK baseline, reducing OTE by
approximately 52% and OOE by about 50%. Ceritically,
DexRefine achieved a perfect 100% success rate across all
trials. This contrasts sharply with the IK baseline, which
failed in 8 out of 10 trials. The baseline’s failures were
due to severe errors, including floor collisions (four trials),
grasp failure (one trial), or a combination of both (three trials).
Fig. [5| provides a qualitative comparison, visually highlighting
typical failure modes of the IK baseline, such as grasp failure
and wrist collisions, in contrast to the successful execution
by DexRefine.

IV. CONCLUSION

In this paper, we presented DexRefine, a residual learning
framework for refining human motions into physically feasible
robot actions. We demonstrated that learning residual actions
in task space accelerates RL training and effectively bridges
the embodiment gap. The efficacy of our approach was
particularly evident in our bottle reorientation task, where
the robot’s different arm-wrist configuration made it difficult

to directly mimic the human’s natural wrist-centric strategy.

DexRefine overcame this physical limitation by generating

(a)

1. Ground Truth HOI Trajectory + DexRefine

2. Syntheig HOI Tr.

™

Fig. 5: Comparison of DexRefine with IK Retargeting in (a)
a simulated environment and (b) a real-world deployment.

an in-hand manipulation strategy to rotate the object—a
dexterous behavior absent from the original mocap data. This
results demonstrate that our method can produce emergent
behaviors that augment physical interaction. Despite these
promising results, a key limitation is that our method has
been validated on only a single task. Therefore, our future
work will focus on extending DexRefine to a more diverse
range of tasks and objects.
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APPENDIX
A. Reward Function

The total reward is composed of several task-specific
terms and regularization penalties (see Table [[T] for parameter
settings). We represent the pose of a rigid body by its position
p € R? and orientation q € R*, where q is a unit quaternion.
The overall reward is defined as:

(&)

1) Reward Components: The task rewards encourage
successful manipulation behaviors. The primary object reward,
Tobj» promotes transferring the object from its current pose
(PSH, i) to the goal pose (pﬁgjﬂ, qiﬁ;ﬂ). This reward provides
a smooth and dense signal that increases as the object
approaches its goal. Importantly, it is gated by an indicator
function W contact or goat, Which activates only when the hand
is in contact with the object or the task is completed. We
define the object’s position and rotation errors as follows: the

. . o cur __ . goal .
position error 18 €p,obj = Hpobj pobj o9 and the rotation error

. T goal
IS ER obj = dlStrot(q(c,lf,er Yobj

rotation distance.

T = Tobj ~+ Thand + T'wrist + Tcontact — P

), where distyo (-, ) denotes the

— pos rot
Tobj = Wobj eXP( - a’obj €p,obj — aobj eR,obj) “ACOIIIHCI or goal -

(6)

Auxiliary pose rewards guide both the hand and wrist
configurations. For notational consistency, we adopt the error
notation introduced for the object—namely, the position error
ep,. and the rotation error e .—with the subscript indicating
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Fig. 6: Trajectory distribution of the collected HOI data:
(a) Wrist trajectory distribution in the robot base coordinate
system, (b) Initial object position distribution in the robot
base coordinate system.

the entity. The hand reward, rpanq, aligns the fingertips with
their goals, shaping a pre-grasp posture:

Thand = Whand eXP( - ag;);d ep,hand) . @)

The wrist reward, ry,is, guides the end-effector toward its
goal pose:

Twrist = Wwrist eXp( - aai?st €p,wrist — a{;?rtist eR,wﬁst)- 8)

2) Penalty Components: Penalties are introduced to regular-
ize behavior, ensuring safety. The collision penalty, Peottisions
discourages unintended contact between the arm and the
environment. It is proportional to the forces measured at
links 6, 7, and 8 of the Franka Emika Panda, which are
located near the end-effector and thus most susceptible to

collision: 5

Pcollision = Weollision Z F;. (9)
i=1
Control regularization terms limit excessive joint move-
ments and energy expenditure. The velocity penalty regulates
joint speed:

Dvel = Wyel ||V||2 . (10)
The torque penalty discourages large actuation effort:
Prorque = Wrorque ||T||2 . (1D

Finally, the work penalty approximates mechanical energy
consumption through the joint-wise product of torque and
velocity magnitudes:

Pwork = Wwork (|V| ‘ |T|) (12)
The total penalty is the sum of these components:
D = Peollision T Pvel + Prorque + Pwork- (13)

B. Observation Space

The teacher policy is trained using observations composed
of proprioceptive, privileged, object, and target information,
as summarized in Table[ITl]} For the proprioceptive observation,
the current step is stacked together with the previous two
steps, which indirectly provides information about velocity
and acceleration to the policy.

TABLE II: Reward function parameters.

Parameter Symbol Value
Reward Weights

Object reward weight Wobj 30.0
Hand reward weight Whand 10.0
Wrist reward weight Whyrist 5.0
Contact reward weight Weontact 0.05
Penalty Weights

Collision penalty weight Weollision 0.01
Velocity penalty coefficient Wyel 0.0002
Torque penalty coefficient Wiorque 0.0003
Energy penalty coefficient Wenergy 0.0005
Pose-Alignment Coefficients

Object position coefficient agg.s 10.0
Object rotation coefficient af)‘f)j 20.0
Hand position coefficient agggd 10.0
Wrist position coefficient wrist 5.0
Wrist rotation coefficient att 5.0

wrist

C. HOI Trajectory Augmentation during RL Training

To prevent our policy from overfitting to the limited spatial
distribution of our collected motion capture (mocap) data, we
introduce an online data augmentation scheme during the RL
training phase. Figure [4| illustrates that the original Human-
Object Interaction (HOI) data is primarily concentrated
within a specific workspace region (z € [0.4,0.8]m and
y € [—0.2,0.2]m relative to the robot’s base frame). At
the start of each training episode, the augmentation process
begins by uniformly sampling a reference HOI trajectory from
the dataset. Subsequently, a random 2D translation offset,
Ap = (Az, Ay), is sampled from a uniform distribution and
applied to the entire trajectory. Since this direct translation
can create a spatial discontinuity between the robot’s fixed
initial pose and the start of the shifted trajectory, we perform
a final smoothing step. To ensure a continuous and feasible
motion, the final augmented wrist trajectory is generated by
linearly interpolating its initial segment between the robot’s
actual starting wrist pose and the first pose of the translated
reference trajectory. This strategy allows the policy to train
on a wider variety of target locations, significantly improving
its generalization capabilities.

D. Training Details

We train our policies using IsaacLab [30] as the simulation
environment. The physics timestep is set to At = 1/120 s,
while the control frequency of the policy is 1/30 s by applying
a decimation factor of 4. The Teacher Policy is trained
for 5,000 policy steps using 4,096 parallel environments,
equivalent to approximately 250 days of simulated experience.
The Student Policy is trained for 650 policy steps with 2,048
parallel environments, corresponding to approximately 15
days of simulated experience. The detailed hyperparameters
used for training with PPO are summarized in Table

E. Domain Randomization

To facilitate sim-to-real transfer, we applied extensive
domain randomization on robot dynamics, object properties,



TABLE III: Observations used for training the Teacher Policy.

Category Component Dim
Hand joint velocities 16
Hand joint torques 16
Fingertip orientations (quat) 16
.. Fingertip velocities 24
Privileged Fingertip forces 24
Object velocity (lin + ang) 6
Arm joint velocities 7
Arm joint torques 7
Total privileged dim 116
Arm joint positions 7
Hand joint positions 16
Propriocentive Previous joint actions 23
P P Wrist position (kinematics-derived) 3
Wrist orientation (quat, kinematics-derived) 4
Fingertip positions (world) 12
History buffer (3-step stacked) 195
Object position 3
Object orientation (quat) 4
Object Physics & Object mass 1
Contact Center of mass 7
Encoding Material encoding 3
Binary contact info 11
Total object dim 29
Goal object position 3
Goal object orientation (quat) 4
Motion Target Goal fingertip positions 12
Goal wrist orientation (quat) 4
Goal wrist position 3
Total target dim 26
Total observation dim 366

and environment conditions. The details of the randomized
parameters and their ranges are summarized in Table [V]

F. Network Architecture

Both the actor and critic networks are implemented as
multilayer perceptrons (MLPs) with hidden layer sizes of
[1024, 1024, 512, 256], using ELU activations. To facilitate
sim-to-real transfer, we employ an asymmetric actor—critic
architecture, where privileged information is provided exclu-
sively to the critic network.

For the actor network, object-related physics informa-
tion and binary touch information are encoded into a 16-
dimensional latent vector through an encoder network with
hidden layers [128, 64] and ReLU activations. The latent
representation is then concatenated with the remaining
observations and processed by the main actor network to
generate the final policy output.

TABLE IV: PPO hyperparameters

Parameter Value
Value loss coefficient 1.0
Clipped value loss True
Clipping parameter 0.2
Entropy coefficient 0.005
Number of learning epochs 5
Number of mini-batches 4
Number of steps for env 32
Learning rate 5.0 x 10~4
Learning rate schedule Adaptive
Discount factor 0.99
GAE parameter 0.95
Desired KL divergence 0.01
Maximum gradient norm 1.0

TABLE V: Domain randomization settings used in our
training.

Parameter Type Distribution  Range
Robot

Mass Scaling uniform [0.5, 1.5]
Friction Scaling uniform [0.8, 1.2]
Joint Limits (lower)  Scaling uniform [0.95, 1.05]
Joint Limits (upper)  Scaling uniform [0.95, 1.05]
Joint Stiffness Scaling uniform [0.5, 1.5]
Joint Damping Scaling uniform [0.5, 1.5]
Object

Mass Scaling uniform [0.1, 1.0]
Friction Scaling uniform [0.5, 1.1]
Restitution Scaling uniform [0.0, 0.4]
Desk

Friction Scaling uniform [0.5, 1.1]
Restitution Scaling uniform [0.0, 0.4]
Environment

Gravity Additive  uniform [0.0, 0.5]
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