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Abstract— Loco-manipulation, physical interaction of vari-
ous objects that is concurrently coordinated with locomotion,
remains a major challenge for legged robots due to the
need for both precise end-effector control and robustness to
unmodeled dynamics. While model-based controllers provide
precise planning via online optimization, they are limited by
model inaccuracies. In contrast, learning-based methods offer
robustness, but they struggle with precise modulation of inter-
action forces. We introduce RAMBO, a hybrid framework that
integrates model-based whole-body control within a feedback
policy trained with reinforcement learning. The model-based
module generates feedforward torques by solving a quadratic
program, while the policy provides feedback corrective terms
to enhance robustness. We validate our framework on a
quadruped robot across a diverse set of real-world loco-
manipulation tasks, such as pushing a shopping cart, balancing
a plate, and holding soft objects, in both quadrupedal and
bipedal walking. Our experiments demonstrate that RAMBO
enables precise manipulation capabilities while achieving robust
and dynamic locomotion.

I. INTRODUCTION

Modern legged robots have demonstrated impressive mo-
bility over a wide range of terrains [1, 2, 3, 4]. To ex-
pand their capabilities beyond conventional locomotion tasks,
there is growing interest in loco-manipulation, which enables
these machines to actively interact with and manipulate
their surroundings. However, whole-body loco-manipulation
remains a challenging task for these systems, as it requires
coordinated control of both the base and end-effector move-
ments to achieve precise and robust behaviors, which often
pose conflicting objectives [5].

The ultimate goal of this work is to equip the legged
controllers with the capability to perform robust, precise, and
efficient whole-body loco-manipulation. We aim to combine
the strengths of model-based and learning-based approaches
to achieve effective torque-level control while remaining
robust against unmodeled effects and disturbances.

To this end, we propose RAMBO—RL-Augmented Model-
Based WhOle-body Control—a hybrid control framework for
whole-body loco-manipulation tasks on legged systems. Our
method generates feedforward torques by optimizing end-
effector contact forces through a model-based whole-body
controller, formulated as a quadratic program (QP), while
ensuring robustness with an RL policy that compensates for
modeling errors through its corrective actions.
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Fig. 1: Various whole-body loco-manipulation tasks enabled by RAMBO on
Unitree Go2 [6] in both quadrupedal and bipedal modes.

We demonstrate the effectiveness of our method on a range
of loco-manipulation tasks, including pushing a shopping
cart, balancing a plate, and holding soft objects—spanning
both quadrupedal and bipedal dynamic walking on a
quadruped platform. Through extensive evaluations in simu-
lated and real-world scenarios, RAMBO demonstrates a high
degree of precision in tracking end-effector targets while
remaining robust in typical locomotion tasks.

II. METHOD

As shown in Fig. 2, RAMBO is composed of three
elements: motion reference generation, feedforward torque
acquiring through WBC, and feedback policy with RL. We
describe each component in detail below.

Fig. 2: Overview of the RAMBO architecture. It consists of three core
components: (1) a motion reference generator, (2) a WBC module that
computes feedforward joint torques τ FF

j , and (3) an RL policy that generates
feedback corrections to both WBC input parameters and motion reference.

A. Motion Reference Generation

For each control time step, RAMBO starts with querying
a motion reference for both the base and joint (q̂, ˆ̇q), where
q̂, ˆ̇q are the desired generalized coordinates and velocities
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Fig. 3: Detailed architecture of the RAMBO control framework. The desired base velocity and EE positions are used to generate a kinematic motion
reference, which is sent to the policy and whole-body control module. The whole-body control module also takes the desired EE force to compute the
feedforward joint torques. The learned policy provides corrective feedback to the base acceleration and joint position targets, enabling robust control under
modeling errors and dynamic disturbances.

respectively; q̂ = [p̂ R̂ q̂j ] are the desired base position,
orientation and joint positions; ˆ̇q = [v̂ ω̂ ˆ̇qj ] are the desired
base linear and angular velocities, joint velocities. We use
the subscript j to denote the joint dimensions.

In addition, categorizing the end-effectors i ∈ N into
two kinds: locomotion L ⊂ N , marked by superscript l,
and manipulation M ⊂ N , marked by superscript m, our
kinematic reference generation also accept specification for
the desired EE positions P p̂

m
i ∈ R3 for the limbs responsible

for manipulation. By incorporating predefined gait patterns
and their contact schedules, P p̂l

i is generated by interpolating
the keyframes (Pplift,Ppmid,Ppland)i. The reference for each
joint q̂j is calculated using inverse kinematics (IK)

q̂j = IK(Pp,PR,P p̂1, ...,P p̂N ). (1)

For accounting the force command and the dynamics effect
from manipulation tasks, the contact state for manipulation
ĉm = {ĉi|i ∈ M} is always set to 1. The remaining
contact state of locomotion end-effector ĉl = {ĉi|i ∈ L} is
predefined according to the gait pattern. We fill unspecified
references with either current state or zeros

P p̂ = Pp,PR̂ = PR

P v̂ = [P v̂x,P v̂y, 0],P ω̂ = [0, 0,P ω̂z], ˆ̇qj = 0.
(2)

We note that RAMBO in principle allows any reference
trajectory generation process including the ones using tra-
jectory optimization or from offline motion library. The only
requirement is to provide the contact state ĉi ∈ {0, 1} for
each end-effector i ∈ N .

B. Generating Feedforward Torque via WBC

To account for contributions from all contacts and ensure
the robot tracks the reference motion, we employ a compu-
tationally lightweight whole-body controller to optimize the
reaction forces leveraging the single rigid body model.

We firstly calculate the base linear and angular acceler-
ation target P â = (P âl,P âa) ∈ R6 using a proportional-
derivative controller

P âl = κlp(P p̂− Pp) + κld(P v̂ − Pv) (3)

P âa = κaplog(PR̂⊤ · PR)∨ + κad(P ω̂ − Pω), (4)

where κlp, κld, κap, κad are the linear and angular, propor-
tional and derivative gains respectively; log(·)∨ : SO(3) →
R3 converts a rotation matrix into an angle-axis representa-
tion, which is a vector in R3.

In addition to the desired acceleration P â, RAMBO also
accept user’s specification of desired EE forces P ûi for the
manipulation end-effectors i ∈ M, as shown in Fig. 3.
Using Bâ and Bûi in the base frame {B}, we formulate
the following QP to optimize the reaction force

min
Bui,i∈N

∥∆Ba∥2U +
∑
i∈M

∥∆Bui∥2V +
∑
i∈L

∥Bui∥2W (5a)

subject to : Ba =

N∑
i=1

AiBui + ĝ (5b)

(Bui)z = 0, i ∈ Lswing (5c)
∥(Bui)x∥ ≤ µ(Bui)z, i ∈ Lstance (5d)
∥(Bui)y∥ ≤ µ(Bui)z, i ∈ Lstance (5e)

uz,min ≤ (Bui)z ≤ uz,max, i ∈ Lstance (5f)

where ∆Ba = Bâ − Ba, ∆Bui = Bûi − Bui; Ba =
[Bv̇, Bω̇] ∈ R6 is the acceleration of the single rigid body;
Ai is the generalized inverse inertia matrix; µ is the friction
coefficient; Lswing,Lstance are the set of end-effectors for
locomotion in swing and stance respectively; U ,V ,W ≻ 0
are positive definite weight matrices. We note that friction
checking is only performed on locomotion end-effectors
due to the uncertainty of contact surface for manipulation.
Leveraging the SRB model, RAMBO efficiently accounts for
the dynamic effects from contacts.

The feedforward joint torques τ FF
j are calculated using

τ FF
j =

N∑
i=1

J⊤
i · Bui, (6)

where Ji is the Jacobian corresponds to the end-effector i.
In addition to the feedforward torque from the reaction

force optimization module, we calculate an additional torque
term τGC

j to compensate the gravity and account for the limb
inertia, for each joint k

(τGC
j )k = −

∑
l∈D(k)

J⊤
lk ·mlg, (7)

where Jlk is the Jacobian matrix mapped from the CoM
velocity of link l to joint k; ml is the mass of link l, and
D(k) is a set of descendant links of k.

C. Learned Policy

Directly applying the feedforward torque τj may not be
enough to accomplish complex loco-manipulation tasks due



to the large model mismatch. As a remedy, RAMBO incorpo-
rate a learned policy trained in simulated environments using
RL to improve the overall robustness of the controller over
unconsidered dynamic effects.

We design the observation space O to include the pro-
prioceptive information, gait information, kinematic joint
position target, and user commands. They are chosen to
ensure reward function can be successfully induced from
only the observation. We stack 6-step history of observations
as input to the policy [7]. In contrast to previous works [8, 9],
the action at ∈ A is designed to have two separate heads:
base acceleration correction ∆P â and joint position correc-
tion ∆q̂j , providing feedback to both feedforward torque
calculation and joint positions. The surrogate targets are

P ã = P â+∆P â

q̃j = q̂j +∆q̂j ,
(8)

where P ã is taken as the target for the base acceleration
for the reaction force optimization module. The desired
joint position q̃j is used to calculate the final joint torque
command sent to the robot, formulated as

τj = τ FF
j + τGC

j + kp(q̃j − qj) + kd( ˙̂qj − q̇j), (9)

where kp, kd are the proportional and derivative gains for the
joint PD controller.

The reward function consists of a combination of task-
related rewards and regularizations

r = rtask + rreg, (10)

where rtask =
∏

i r
i
task and rreg =

∏
j r

j
reg are a product of

series sub-rewards. Both rewards are designed to ensure the
success of tracking user commands and regularized action.

III. RESULTS

RAMBO offers a general framework for whole-body loco-
manipulation on legged systems. We demonstrate its effec-
tiveness on the Unitree Go2 [6], a small-scale quadruped
robot, across a variety of tasks involving both quadrupedal
and bipedal locomotion.

We implemented two scenarios targeting the quadrupedal
and bipedal tasks, respectively. In the quadruped tasks, the
robot walks using three legs while lifting the front-left leg
to perform manipulation. For the bipedal tasks, it walks
solely on its hind legs while using both front legs for
manipulation. We design the base orientation to keep flat
to the ground for quadruped tasks, while demonstrating
more challenging loco-manipulation tasks by making the
robot to perform bipedal walking with upright pose. These
bipedal demonstrations highlight the potential of RAMBO for
applications on humanoids.

We leverage Isaac Lab [10], a massive parallel training
framework on GPU, to efficiently train the policy with Prox-
imal Policy Optimization [11]. During training, we leverage
qpth [12], a fast batch QP solver implemented in PyTorch, to
solve parallel QPs to generate feedforward torques. Despite
the effectiveness of qpth in training, we employ OSQP [13]

as a faster QP solver for a single problem to ensure the whole
control pipeline runs at 100 Hz in the real-world experiments.

To facilitate the training with force command at end-
effectors, we apply virtual external forces acted at the same
end-effector in the opposite direction, similarly to the training
technique proposed by Portela et al. [14]. We employ various
Domain Randomization [15] to ensure successful sim-to-real
transfer.

A. Quantitative Evaluation

To evaluate the performance of RAMBO, we compare
RAMBO with the following baselines in simulated environ-
ments in terms of tracking the desired base velocity, desired
EE positions and forces:

• Vanilla: Policies trained to track the commands in
an end-to-end fashion [14]. We use the same contact
information from the gait pattern to facilitate the policy
to generate proper gait patterns;

• Imitation: Policies trained to track the target joint
angles from kinematic reference [16] in addition to the
vanilla policies;

• Residual: Policies trained to produce joint position
residuals in addition to the kinematic reference, without
WBC to generate feedforward torques;

• RAMBO-base: WBC with a feedback policy outputting
acceleration correction ∆P â only;

• RAMBO-joint: WBC and a feedback policy outputting
joint correction ∆q̂j only;

• RAMBO-ff: WBC only (no training needed).
Note that the action space of the vanilla and imitation
policies is an offset of joint positions relative to the fixed
default positions. We set the action scale to 0.25 to facilitate
exploration, a common choice in the previous works [17]. In
comparison, RAMBO and residual policies have joint actions
relative to the kinematic reference with a scale of 0.15.

During evaluation, we randomly sample user commands in
base velocity, EE positions and forces. As shown in Table I,
RAMBO achieves comparable or superior performance to all
baselines across both quadrupedal and bipedal tasks. Notably,
our method exhibits a clear advantage in tracking target
end-effector positions, significantly reducing tracking errors.
These results highlight RAMBO ’s precision and effective-
ness in whole-body loco-manipulation for both locomotion
modes. Note that since we apply virtual external forces at the
end-effectors, the baselines’ lower performance in tracking
end-effector positions indicates that they fail to generate the
appropriate desired forces while following user-commanded
end-effector positions.

B. Real-world Experiments

By changing user inputs during runtime, we demonstrate
the success execution of diverse loco-manipulation skills
such as bipedal cart pushing and dice holding with the same
policy trained for bipedal tasks. Similarly with the policy
trained for quadrupedal tasks, RAMBO achieves stable object
holding and plate balancing while walking with other three
legs, as shown in the snapshots of these experiments are



Error in tracking from quadruped task Error in tracking from biped task
lin vel (m/s) ↓ ang vel (rad/s) ↓ EE pos (m) ↓ lin vel (m/s) ↓ ang vel (rad/s) ↓ EE pos (m) ↓

Vanilla 0.387± 0.022 0.257± 0.026 0.254± 0.009 0.313± 0.026 0.353± 0.066 0.431± 0.024
Imitation 0.383± 0.022 0.253± 0.025 0.257± 0.010 0.310± 0.027 0.334± 0.060 0.448± 0.018
Residual 0.153± 0.027 0.153± 0.067 0.077± 0.013 0.383± 0.054 0.508± 0.271 0.347± 0.030
RAMBO-base 0.321± 0.041 0.293± 0.126 0.168± 0.036 0.305± 0.060 0.389± 0.171 0.453± 0.025
RAMBO-joint 0.108± 0.014 0.101± 0.032 0.046± 0.007 0.306± 0.046 0.383± 0.109 0.134± 0.044
RAMBO-ff 0.374± 0.036 0.404± 0.154 0.286± 0.048 0.320± 0.061 0.389± 0.187 0.447± 0.026
RAMBO 0.087± 0.009 0.085± 0.022 0.039± 0.003 0.286± 0.039 0.352± 0.075 0.036± 0.002

TABLE I: Quantitative evaluation of RAMBO compared with baselines. The mean and variance are calculated across 3 different seeds with 1000 episode
for each seed. For biped tasks, the end-effector tracking error is calculated as the mean of tracking FL and FR end-effectors.

included in Fig. 1. In more detail, we overlay the multiple
images of shopping cart pushing and sponge holding tasks
in Fig. 4 to demonstrate that RAMBO enables the quadruped
to apply the desired force stably while walking dynamically.

C. Compliance

Finally, we showcase one of the features enabled by
RAMBO, compliance, by lowering the PD gains at the joints
associated with the manipulation end-effectors. Thanks to
the WBC, the robot is able to maintain a stable end-
effector position while walking and being compliant against
external pushes. As illustrated in Fig. 6, this compliance
is demonstrated through an interactive handshake, where
users are able to physically engage with the robot safely.
By decoupling the feedforward torque and PD feedback,
RAMBO enables a flexible trade-off between compliance and
accuracy in end-effector tracking, an essential property for
ensuring safe and adaptive interactions.

IV. CONCLUSION

We present RAMBO, a hybrid control framework that
combines a model-based whole-body controller with a
learned policy to enable robust and precise whole-body loco-
manipulation on legged robots. By leveraging a computation-
ally efficient QP based on the SRB model, RAMBO optimizes
feedforward torque commands while maintaining robustness
through learning-based feedback. Our results in both simu-
lation and on hardware demonstrate RAMBO’s advantage in

Fig. 4: Snapshots of two whole-body loco-manipulation tasks, where the
desired EE force are overlaid as pink arrows. Upper: pushing a shopping
cart while walking in bipedal mode; bottom: holding a sponge while walking
in quadrupedal mode.

Fig. 5: Snapshots of experiments demonstrating RAMBO’s robustness on
uneven terrains in bipedal mode (left) and quadrupedal mode (right).

Fig. 6: Compliance enabled by RAMBO in quadruped mode (left) and
bipedal mode (right). The robot is commanded to maintain its end-effector
position while allowing external forces to displace it compliantly.

tracking user commands across a range of quadrupedal and
bipedal loco-manipulation tasks. Additionally, the framework
allows for a flexible trade-off between tracking accuracy and
compliance, which is crucial for safe and adaptive interaction
with environment.

Currently, RAMBO relies solely on proprioceptive infor-
mation, which negatively affects performance due to drift
in state estimation. As a next step, we aim to incorporate
additional sensing modalities to enhance robustness and ac-
curacy. Nevertheless, we see strong potential for RAMBO in
future loco-manipulation research, including the integration
of full-order WBC dynamics models and its application to
higher degree-of-freedom humanoids. Other promising di-
rections include extending the framework with online model
adaptation to further improve generalization and precision.
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