SLAC: Simulation-Pretrained Latent Action Space
for Whole-Body Real-World RL

1,2

Jiaheng Hu'! Peter Stone

!The University of Texas at Austin

Abstract—Building capable household and industrial robots re-
quires mastering the control of versatile, high-degree-of-freedom
(DoF) systems such as humanoid robots. While reinforcement
learning (RL) holds promise for autonomously acquiring robot
control policies, scaling it to high-DoF embodiments remains
challenging. Direct RL in the real world demands both safe
exploration and high sample efficiency, which are difficult to
achieve in practice. Sim-to-real RL, on the other hand, is often
brittle due to the reality gap. This paper introduces SLAC, a
method that renders real-world RL feasible for complex embod-
iments by leveraging a low-fidelity simulator to pretrain a task-
agnostic latent action space. SLAC trains this latent action space
via a customized unsupervised skill discovery method designed
to promote temporal abstraction, disentanglement, and safety,
thereby facilitating efficient downstream learning. Once a latent
action space is learned, SLAC uses it as the action interface for a
novel off-policy RL algorithm to autonomously learn downstream
tasks through real-world interactions. We evaluate SLAC against
existing methods on a suite of bimanual mobile manipulation
tasks, where it achieves state-of-the-art performance. Notably,
SLAC learns contact-rich whole-body tasks in under an hour of
real-world interactions, without relying on any demonstrations
or hand-crafted behavior priors. More information and robot
videos at robo-rl.github.io

I. INTRODUCTION

Future robots are expected to perform diverse tasks in
unstructured environments. Achieving this requires controlling
high-degree-of-freedom, multi-purpose systems like mobile
manipulators and humanoids. These robots offer unique op-
portunities to handle complex and ambitious tasks: their many
degrees of freedom allow them to pursue multiple control
objectives simultaneously, including sophisticated contact-rich
interactions (e.g., wiping a board while avoiding obstacles),
and their combined locomotion and manipulation capabilities
provide large workspaces for long-horizon operation. How-
ever, these opportunities come with significant challenges. The
combination of long-horizon, multi-objective tasks and high-
dimensional action spaces makes policy optimization particu-
larly difficult. Moreover, performing contact-rich interactions
with the whole body increases the risk of damaging the robot
and its surroundings, making safety a critical concern.

As a result, prior policy learning methods that have shown
success in simpler settings often struggle to scale to these
high-DoF, multi-purpose robots. On the one hand, successes in
Imitation Learning (IL) with simple fixed-base robot arm [1-
3] are hard to replicate for high DoF robot systems due to
the difficulty both in creating a teleoperation interface and in
collecting a sufficient number of high-quality demonstrations.

Roberto Martin-Martin®3
2Sony AI 3Amazon

On the other hand, while Reinforcement Learning (RL) algo-
rithms can learn without expert demonstrations, they require
many environment steps before convergence, and has primarily
been conducted in simulation [4—10], with policies transferred
zero-shot to the real world. However, these approaches often
face significant challenges in bridging the reality gap [11-
15], which often widen as the complexity of robots and tasks
increases, despite costly domain randomization or the tedious
construction of high-fidelity digital twins [4, 16, 17].
Real-world RL offers a promising alternative: by enabling
robots to learn directly through trial-and-error interactions with
the physical world, we may bypass both the reality gap and the
need for costly human demonstrations. Unfortunately, existing
real-world RL approaches [18-21] remain largely limited to
simple domains such as tabletop manipulation and quadruped
locomotion. They do not scale effectively to more complex
tasks and embodiments, due to fundamental challenges in
ensuring safe exploration given larger workspaces and fre-
quent physical contact with the environment, and in achieving
sample-efficient learning in the presence of high-dimensional
action spaces, long-horizon tasks, and intricate reward struc-
tures. These factors severely limit the applicability of current
real-world RL techniques to complex robotics problems.
This paper introduces SLAC: Simulation-Pretrained Latent
ACtion Space for Real-World RL, which utilizes low-fidelity
simulator to make real-world downstream RL feasible for
high DoF robots such as mobile manipulators. The SLAC
framework introduces a two-step procedure to circumvent the
main challenges of real-world RL, namely unsafe exploration
and sample inefficiency. In the first step, SLAC learns a task-
agnostic latent action space in a coarsely aligned, low-fidelity
simulator via Unsupervised Skill Discovery (USD) [22-25].
SLAC utilizes a novel USD objective that shapes this latent
action space to be (1) temporally extended, enabling more
effective exploration than when directly using the low-level
action space by reducing decision frequency; (2) disentangled,
allowing each latent action dimension to independently affect
the states, thereby facilitating joint optimization of multiple
objectives without conflict; and (3) safe, avoiding dangerous
behaviors that could damage the robot. In the second step, the
learned SLAC latent action space is used by a novel off-policy
RL algorithm to efficiently learn downstream tasks directly
in the real world. Critically, this design offers robustness to
the reality gap: even if latent actions exhibit slight behav-
ioral mismatches between simulation and the real world, the
downstream policy can still learn to solve the task by directly

SLAC Latent Action Space
@)
) (©)
(@) [0) A
O

Low-fidelity Simulation

Unsupervised
Latent Action

Learning

Board Env

Original High-dimensional Action Space

O <nr

Real-world Downstream Tasks

SLAC
Action
Decoding

Clean Board Wipe Over Obstacle

Fig. 1: SLAC uses a task-agnostic action space trained in low-fidelity simulation (leff) to learn downstream tasks in the real
world. This latent action space is safe, temporally extended, and disentangled, enabling a bimanual mobile manipulator to
solve challenging contact-rich whole-body tasks (right) with less than an hour of autonomous real-world interactions.

selecting effective latent actions based on sparse reward.

We evaluate our method on a complex, high-DoF, bi-
manual mobile manipulator, where SLAC can learn contact-
rich whole-body tasks in less than an hour of real-world
interactions, using only onboard sensor signals. To the best of
our knowledge, SLAC is the first algorithm that enables a high-
DoF mobile manipulator to learn with RL in the real world
without relying on any demonstrations/mocap data [26, 27] or
hand-crafted behavior priors [26, 28, 29].

II. RELATED WORK

Robots can be trained to perform tasks using four main
approaches: (1) sim-to-real reinforcement learning, (2) real-
world reinforcement learning, (3) classical motion planning
and control, and (4) learning from demonstrations. In this
section, we review the first two approaches, which are most
relevant to SLAC. We defer discussion of the latter two [1—
3, 30-48] to the appendix.

Sim-to-Real Reinforcement Learning: While Reinforce-
ment Learning (RL) provides a way for agents to learn
sophisticated behaviors from trial and error, popular algorithms
like PPO [49] are quite sample-inefficient and can require
billions of samples before they converge. Many works have
therefore resorted to performing the RL training completely in
simulation [4-11, 13, 14], and zero-shot transfer the learned
policy into the real-world. Such a procedure requires the
simulation to have very high fidelity, and can pose significant
challenges for simulated object creation, especially for tasks
that are contact-rich/non-rigid [12]. Unlike these works, SLAC
relies on simulated interactions only to provide a suitable
action space for downstream real-world RL, which reduces
or eliminates the reliance on high-fidelity simulation.

RL in the Real World: Directly doing RL in the real world
offers a promising direction to avoid the requirement of high-
fidelity simulation [18-21, 50-52]. However, these methods
often target simple domains such as fixed-base manipulator,
and fall short when applied to more complex embodiments
such as whole-body mobile manipulation due to the high

requirements for sample efficiency and safe exploration. In the
rare exceptions where a mobile manipulator does learn through
trial-and-error in the real world [26-29], domain knowledge is
often injected to simultaneously facilitate safety and efficient
exploration, in the form of ad-hoc hand-crafted motion priors
[26, 28, 29] and/or demonstrations [26, 27]. By comparison,
SLAC enables high-degree-of-freedom mobile manipulators to
learn downstream tasks in the real world without relying on
any demonstrations or hand-crafted behavior priors.

III. SLAC: SIMULATION-PRETRAINED LATENT ACTION
SPACE FOR REAL-WORLD RL

SLAC aims to enable sample-efficient and safe real-world
reinforcement learning (RL) for high DoF robots such as
mobile manipulators. We formulate the real-world RL problem
as a Partially Observable Markov Decision Process (POMDP),
defined by the tuple M = (S, A, O, P, Riask,v), where
S is the set of underlying environment states, A is the
high-dimensional native action space (e.g., joint velocities or
torques), O is the observation space (e.g. camera images),
P(s'|s,a) is the state transition function, Ri.(s,a) =
> Ri(s,a) is a composite reward function with m > 1
term(s)!, and v € (0, 1] is the discount factor. The objective is
to learn a policy 7(a|o) that maximizes the expected return:

thRmsk(st,a»] (1)

t=0

7 (alo) = argmaxE,

Due to the high dimensionality of .4 and the complexity of
real-world tasks, directly optimizing 7(a|o) in the real world
is prohibitively sample-inefficient and unsafe. To address these
issues, we propose to replace the native control space A with
an N-dimensional multi-discrete > latent action space Z =
Z' % ... x ZN learned in a low-fidelity simulation, which

IThis formulation is general, as any reward function can be expressed as a
sum of component functions.

2While our method is compatible with both continuous and discrete latent
actions, we focus on the discrete case in our experiments. We discuss this
choice in the appendix.

1. Unsupervised Latent Disentangled
Action Space Learning States Features s
v ’I latent actions
ZEZ
Empowerment
Reward

Latent Action
Decoder

Universal Safety
Reward -

% &) -

a;

Low Fidelity Simulation

a1 €A
Temporally Extended Whole-body Motions

2. Real-world Downstream onboard Obs.

Reinforcement Learning ? o&%

1od
JselL

—

Aoy

Camera

Proprio.

latent actions
ZEZ

‘EEFD

Latent Action
Decoder

e

I'sweep'

Real-world Tasks

Fig. 2: The two-step SLAC procedure to enable real-world policy learning. (Left) In the first step, SLAC learns a Latent

Action Decoder that maps each latent action, z € Z, to a sequence of low-level robot actions, (ag, ...,

ar),a; € A. This

decoder is learned in low-fidelity simulation via unsupervised skill discovery with novel objectives that encourage the robot
to independently control different state features (e.g., camera directions, contacts with table, base locations) while being safe.
(Right) In the second step, once the decoder is trained, the robot learns downstream tasks with RL in the real world using
the SLAC latent action space. The task policy directly takes in the onboard sensor observations of the robot (i.e., images,
proprioception) and outputs latent actions z that are decoded into safe robot actions. SLAC applies Factorized Latent-Action
SAC to optimize the policy for downstream tasks with multi-term reward (e.g., look at the objects, keep a bag close, sweep the
trash) directly in the real world with very few samples, converging in less than an hour, by taking advantage of high-frequency

off-policy updates and factorized Q decomposition.

does not accurately replicate the visual or physical properties
of the real world and does not implement the task reward
R,qs1, but approximately retains key physical affordances and
shares the same robot action space .A.

Specifically, we aim to learn a latent action decoder
Tdec(a|0dec, 2), Which converts a latent action z € Z into
low-level actions a € A based on a low-dimensional decoder
observation 04, that is shared across simulation and the real
world (e.g., proprioceptive states, furniture poses). We discuss
in Sec. III-A how we learn this latent action decoder through
unsupervised skill discovery.

Once the latent action decoder is learned, SLAC trains a
perception-to-latent task policy 745k (2|0) in the real world
given a downstream task reward. miqs(2|0) selects latent
actions based on (history of) high-dimensional real-world
observations o € O (e.g. camera images), and is trained
entirely in the real world using a novel sample-efficient off-
policy RL method explained in Sec. III-B.

Together, the task policy and the latent action decoder define
a hierarchical visuomotor policy over low-level robot actions,
which can be run directly on a real robot:

m(alo) = /Wdec(a|0dec, Z) Tiask (2]0) dz 2)

We show the full pipeline of our two-step method in Fig. 2.

A. Learning a Latent Action Space in Simulation

The first step of SLAC seeks to learn a task-agnostic latent
action space capable of supporting a wide range of real-world
task variations. Unsupervised Skill Discovery (USD) [22-25],

which learns diverse task-agnostic behaviors without relying
on explicit task rewards, offers a promising approach for
acquiring such an action space. This process yields a latent
skill decoder 7 gec(a|0gec, 2), where each latent skill z induces
a distinct behavior. These learned skills can then be composed
by a task policy mask(2|0) to efficiently solve downstream
tasks, where the learned skill space serves as a temporally
extended action space of the task policy. 3

However, despite its potential, USD has seen limited adop-
tion in robotics due to its high sample complexity, which
renders it impractical for direct deployment on real robots.
Instead, SLAC addresses this limitation by conducting USD
entirely in simulation, where data collection is fast and inex-
pensive. Our key insight is that even low-fidelity simulation
can serve as an effective substrate for behavior pretraining: as
long as the learned skills span a sufficiently diverse range of
behaviors, they can be composed downstream to solve real-
world tasks. To this end, SLAC employs simulation environ-
ments that do not directly replicate a real-world counterpart
(e.g. not visually realistic, no hard-to-simulate objects like
marker traces), but still preserve key geometric affordances
that are potentially useful for downstream tasks (e.g. a white-
board that the robot can touch, an obstacle that the robot
may collide with). We show some of these environments in
Fig. 1. Importantly, because we do not need the simulation
environment to exactly match the real world, prototyping a
new environment and training a corresponding latent action

3For the rest of this paper, we will use “skills” and “latent actions”
interchangeably.

space can be done quickly.

Given this low-fidelity simulation, SLAC leverages the
Disentangled Unsupervised Skill Discovery (DUSDi) frame-
work [25] for learning a disentangled latent action space,
which has been shown to facilitate sample-efficient down-
stream learning. The DUSDi framework optimizes the follow-
ing mutual-information-based objective:

N
JO0) = "I(8%2") - M(S™: 2, 3)

i=1

where {S}¥, is a set of state entities (e.g. whiteboard,
table, body parts) in the environment that the robot can
interact with; Z = Z' x ... x ZV is the latent action space,
factorized by design into N dimensions; and A < 1 is a
weighting factor for the disentanglement objective. Intuitively,
this objective encourages each latent action dimension Z* to
control only its corresponding state entity S, thereby creating
a disentangled and temporarily extended action space that
allows the robot to independently and simultaneously control
different entities in the environment — an ability critical for
downstream learning. To optimize this objective tractably, we
can approximate Eq. 3 through variational inference [54],
resulting in the following reward function:

N
Toki(s,a) = Zq;(zﬂsi) - AQZ(Zi\Sﬁi) 4)
i=1

where qé) and qu are variational distributions that can either
be learned through self-supervised learning or manually con-
structed, in which case the objective reduces to a form of
goal-conditioned reinforcement learning [55]. In SLAC, we
opt for the latter to constrain the learned behavior.

However, naively optimizing the objective above provides
the robot with no notion of safety, which can result in
irreversible damage when deployed on real hardware. To
address this issue, SLAC incorporates universal safety con-
straints in the form of a safety reward function 7.z that
discourages unsafe behaviors. In principle, 744, can take any
form. In practice, for our robot experiments, we found that the
same safety reward function can be used universally across
all environments and tasks. Specifically, our safety reward
Tsafe consists of the following components: (1) Penalizing
large absolute actions. (2) Penalizing large relative changes
in action. (3) Penalizing collisions. (4) Penalizing excessive
force on the robot. We provide the detailed formulation for
Tsafe in the appendix. The final objective for learning the
latent action space combines task-agnostic exploration with
these safety considerations, as shown below:

Tlatent = Tskill + T'safe (5)
We directly optimize Eq. 5 via RL in simulation. In ap-

pendix, we show the pseudo-code for latent action learning,
and discuss the properties of the learned action space.

B. Sample-Efficient Learning of Downstream Tasks in the Real
World

Given the SLAC latent action space learned in simulation
(Sec. III-A), the second step of SLAC derives a sample-
efficient off-policy Reinforcement Learning Algorithm, which
we named Factorized Latent-Action SAC (FLA-SAC), to
directly learn downstream tasks in the real world. FLA-SAC
is built on top of Soft Actor-Critic [56], with three important
algorithmic innovations to boost the performance. We show
the pseudo-code for FLA-SAC in the appendix.

Efficient Use of Experiences: Due to the high cost
of collecting real-world trajectories, our goal is to develop
algorithms that efficiently learn from a few steps of envi-
ronment interactions. One critical strategy to achieve this
efficiency is giving an off-policy algorithm a high update-to-
data (UTD) ratio, where the number of actor-critic updates
is significantly higher than the number of environment steps,
by repeatedly sampling from a replay buffer that stores all
previous environment steps. FLA-SAC leverages such a high
UTD ratio to maximize data efficiency.

Since a high UTD ratio can increase the risk of overfitting,
recent work [19, 20, 53] proposed various techniques, such
as layer normalization and critic ensembling, to regularize the
policy update. However, we empirically found these methods
to be ineffective in our setting. Instead, we observed that
simply reducing the batch size during updates acts as powerful
regularization that significantly improves performance. This
adjustment helps the model escape poor local optima by
introducing higher gradient variance, which promotes more
effective exploration of the parameter space.

Large Discrete Action Space: Since we opt for a discrete
latent action space in SLAC, we want our downstream learning
algorithm to support discrete actions. Unfortunately, vanilla
SAC only works for continuous actions due to the need
to backpropagate through the action vector during policy
update. While there exist off-policy algorithms that support
discrete action spaces (e.g. DQN [57], Discrete-SAC [58]),
they typically require enumerating the Q function for all
possible actions and do not work for combinatorially large
discrete action spaces (e.g. the latent action space of SLAC).

Instead, FLA-SAC extends SAC to large discrete action
spaces by using the gumbel-softmax trick [59], which allows
us to compute gradients through discrete random variables
via reparametrization. Specifically, we used the non-straight-
through Gumbel-softmax estimation shown in Eq. 6 for sam-
pling actions, with a fixed temperature 7 of 1.0, which we
empirically found to give good performance even when the
size of the action space is as large as O(10°).

IOg’/T(.;(Z | 8) + 9z
T

%(s) = softmax < > , gz ~ Gumbel(0,1)
(6)

Factored Q-Function Decomposition: Challenging
robotics tasks often come with a naturally composite reward

function, where the eventual reward is the sum of a set

TABLE I: We compare the Success rates (1) over 10 rollouts and the total safety violation counts during training ({) of SLAC
against baseline methods across four tasks. In all four tasks, SLAC achieves the highest success rate while also inducing the

least number of safety violations.

Method / Task Board Board-Obstacle Table-Tray Table-Bag
Success Unsafe # Success Unsafe # Success Unsafe # Success Unsafe #
SLAC (ours) 0.9 1 0.8 4 0.9 0 0.7 0
SERL [20] 0.0 8 0.0 22 0.0 6 0.0 9
Sim2Real [15] 0.2 - 0.2 - 04 - 0.0 -
RLPD [53] 0.4 34 0.2 37 0.3 26 0.0 33

of reward terms corresponding to a set of sub-objectives,
e.g. a whole-body mobile manipulation task may require: (1)
navigating to a location, (2) without colliding with obstacles,
and (3) while holding an object at the right orientation.
Directly optimizing this complex reward function with vanilla
RL can be quite challenging, often requiring many steps
of environment interactions, posing a significant challenge
to real-world learning. Our key realization is that we can
take advantage of the disentangled nature of the learned
latent action space Z, by finding and exploiting the strong
dependencies between the latent action dimensions and the
reward terms. Specifically, given a composite reward function
with m terms*: riue = Zzl r4, it can be shown (proof in
the appendix) that Q. (s,z) = >/, Q%(s, z), where each
factored value function Q' represents the expected return for
a specific reward term r;. Now, since each dimension z; of
our latent action z is trained to control and only control
one environment entity, each reward term r; typically only
depends on a small subset of the latent action dimensions
(for example, a reward for navigation is only associated
with the latent action dimension that controls the robot base
location). This property allows us to dissociate each Q¢ with
unrelated latent action dimensions, resulting in Q% (s, 2z,),
where Z; C {1,...,dim(z)} is the index set corresponding
to the dimensions of z that reward r; depends on.

Such a factorization brings us two significant advantages:
First, it effectively prevents @ from learning spurious corre-
lations with actions, thereby providing a better optimization
landscape for accurate prediction of the Q value. Second,
since we calculate the policy update by backpropagating
from the Q functions, each action dimension will only be
updated with reward terms that it can affect, resulting in
a more accurate policy gradient estimation than the non-
factorized version. In other words, our technique effectively
decomposes a hard learning problem into multiple simpler
problems that can be solved in parallel, leading to improved
performance and sample efficiency. In practice, we imple-
ment the Q-decomposition by masking out irrelevant action
dimensions for each Q% using a binary adjacency matrix B
that encodes action-reward dependencies. This implementation
enables parallel computation of all Q-functions, significantly

4Note that SLAC is still valid with a non-composite reward (i.e. m = 1)
and without Q decomposition.

accelerating training. The matrix B can either be learned
automatically from a small number of random interaction
trajectories [10], or manually specified when the mapping is
known a priori [13]. In SLAC, we assume ground-truth access
to this mapping, leveraging the fact that each latent action
dimension is intentionally constructed to control a specific
environment entity (see Sec. III-A).

IV. EXPERIMENTAL RESULTS

Our primary experiments evaluate SLAC on a bi-manual
mobile manipulator — a domain that is ideally suited to our
approach. This domain is not only highly challenging due
to the complexity of the embodiment and task space, but
also practically important for the development of capable
household robots. Specifically, we evaluate our methods in
two different environments: a table environment, where the
robot faces a table with objects on it, and a whiteboard
environment where the robot can interact with a whiteboard.
Each simulation environment takes less than 20 minutes to
create in iGibson [60], using off-the-shelf object models
without any real2sim. In each environment (shown in Fig. 1,
described in detail in the appendix), we evaluate multiple
different visuomotor contact-rich tasks that require whole-
body motion to solve, and present the results (Sec. IV-A) and
ablations (Sec. IV-B). Finally, we present additional results in
Sec. IV-C on a multi-agent domain, demonstrating the broad
applicability of our method.

A. Training Setup & Results

Observations & Network: In all tasks, the observation of
the robot consists only of an RGBD camera observation and
robot proprioception. The pointcloud is first processed by a
PointNet [61] and then passed into an MLP network along
with the proprioceptive data. Both networks are randomly
initialized and trained from scratch. We show the detailed
hyperparameters in the appendix.

Baselines: We compare the performance of our method
against state-of-the-art methods in realworld RL, sim2real RL,
and realworld finetuning. Specifically, we compare against:

e SERL [20], a state-of-the-art real-world Reinforcement
Learning framework that directly train a policy from scratch
in the low-level action space using regularized SAC.

o Zero-shot Sim2Real [15], a task policy trained in sim is
directly applied to the real world.

1.0 1.0
—— SLAC (ours) 1.0
£ £ ——— Entangled . .0 c
43 403-5 —— No Temp o ° 5
. 2
95: g On-Policy [) g = SLAC (ours)
0.5 0.5 ° ° © —— DUSDI+CPG
© —— boar © =
© ~ Vanilla SAC
E board_obst é —_— o o £ ‘
S —— table_bag 2 V/:/ . ° S
— table_tray ° ° =z
0.0 0.0 0.0
0 25 50 50 0 500 1000

Real-world Interaction (minutes)

(a) SLAC training curves (b) Ablations for SLAC

Real-world Interaction (minutes)

Number of Episodes

(¢c) SLAC on the Multi-Particle Domain

Fig. 3: Training curves for SLAC. SLAC can learn contact-rich whole-body manipulation tasks within an hour of real-world
interactions (Fig. 3a), and can be applied to non-robotics domains as well (Fig. 3c). Ablation (Fig. 3b) shows that all the

techniques in SLAC are critical to its success.

« RLPD [53], a state-of-the-art method for learning from both
online and prior data, which we use for finetuning in the real
world with prior data from simulation.

Notice that both Zero-shot Sim2Real and RLPD have an
unfair advantage over our method, as they require implement-
ing downstream task reward and objects (e.g. marker trace) in
simulation. For contact-rich tasks, these objects are often quite
hard to create in simulation. By comparison, our method does
not require implementing the downstream tasks in simulation,
since we are only learning a task-agnostic action space.

Metric and Results: For each method on each downstream
task, we compare the success rate of the final policy across 10
rollouts with different initial states. For the three methods that
require training in simulation (SLAC, Sim2Real, RLPD), we
train for 10M steps in simulation for each task. For the three
methods that require real-world interactions (SLAC, SERL,
RLPD), we train each of them for 30k steps of real-world
low-level robot actions, corresponding to 50 minutes of real-
world interactions, and additionally report the number of times
they have violated the safety constraints during training. The
full result is shown in Table I. In all four tasks, SLAC learns
to solve the task in less than an hour of real-world interactions
(curves in Fig. 3a), while maintaining safety during real-world
exploration, significantly outperforming the baselines.

B. Ablations

To study the effectiveness of each component of our method,
we conduct ablation studies comparing against the following
variations of our method:

« No Disentanglement: where we remove the disentangled
constraint during latent action space learning. As a result,
our latent action space is no longer factored, and we can no
longer apply Q-Function Decomposition during downstream
learning since now all reward terms depend on the entire
latent action vector.

¢ On-Policy: where we replace our proposed FLA-SAC with
PPO[49], a state-of-the-art on-policy RL algorithm that has
achieved many successes in Sim2Real RL.

« Not Temporally Extended: where the task policy makes
decisions at the same frequency as the latent action decoder
(i.e. 10hz).

We report the training curve for each of these variances
of our method on the Board task in Fig. 3b. We can see
that removing any single component of SLAC results in a
significant decrease in the learning efficiency. Note that for
some of these variants (e.g., the on-policy version), it is likely
that they would eventually achieve good performance with
enough training steps. However, given the high cost of real-
world interactions, it is not practical to evaluate this likelihood.

C. Applications to Non-Robotics Domain

Since SLAC is an embodiment-agnostic framework that
does not require domain knowledge, we can in principle apply
SLAC to any robots and even beyond robotics. We briefly
illustrate this point on the Multi-Particle domain [62]. We
follow the task setup of food-poison-hard [25], where a cen-
tralized controller needs to simultaneously control 10 agents
to interact with different landmarks, and report the results in
Fig. 3c. On this challenging task where learning from scratch
completely fails, SLAC successfully learns policies that match
the final performance of the previous state of the art [25], while
being an order of magnitude more sample efficient. This result
illustrates the broad applicability of SLAC.

V. CONCLUSION

This paper introduced SLAC, a framework for enabling
high DoF robots to learn policy directly in the real world,
by leveraging a latent action space trained in a low-fidelity
simulation. SLAC learns this latent action space through
unsupervised skill discovery, and employs a novel sample-
efficient RL algorithm to learn task policy in the SLAC latent
action space. Evaluated on a set of contact-rich whole-body
manipulation tasks, SLAC is able to solve the tasks in under an
hour of real-world interaction, where baseline methods failed.
SLAC opens up new opportunities for advancing both latent
action space learning (e.g., through improved skill discovery
methods) and downstream policy learning (e.g., by leveraging
or learning a world model). We believe SLAC provides a
strong foundation for scaling real-world robot learning to
increasingly complex and diverse tasks and embodiments, and
discuss the limitations and future directions in the appendix.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

A. O’Neill, A. Rehman, A. Maddukuri, A. Gupta,
A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar,
A. Jain et al., “Open x-embodiment: Robotic learning
datasets and rt-x models: Open x-embodiment collab-
oration 0,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2024, pp.
6892-6903.

A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang,
R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and
R. Martin-Martin, “What matters in learning from offline
human demonstrations for robot manipulation,” arXiv
preprint arXiv:2108.03298, 2021.

C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du,
B. Burchfiel, R. Tedrake, and S. Song, “Diffusion pol-
icy: Visuomotor policy learning via action diffusion,”
The International Journal of Robotics Research, p.
02783649241273668, 2023.

J. Hu, R. Hendrix, A. Farhadi, A. Kembhavi, R. Martin-
Martin, P. Stone, K.-H. Zeng, and K. Ehsani, “Flare:
Achieving masterful and adaptive robot policies with
large-scale reinforcement learning fine-tuning,” arXiv
preprint arXiv:2409.16578, 2024.

D. Honerkamp, T. Welschehold, and A. Valada, “n?m?:
Learning navigation for arbitrary mobile manipulation
motions in unseen and dynamic environments,” arXiv
preprint arXiv:2206.08737, 2022.

R. Yang, Y. Kim, A. Kembhavi, X. Wang, and
K. Ehsani, “Harmonic mobile manipulation,” arXiv
preprint arXiv:2312.06639, 2023.

N. Yokoyama, A. W. Clegg, E. Undersander, S. Ha,
D. Batra, and A. Rai, “Adaptive skill coordina-
tion for robotic mobile manipulation,” arXiv preprint
arXiv:2304.00410, 2023.

Y. Ma, F. Farshidian, and M. Hutter, “Learning arm-
assisted fall damage reduction and recovery for legged
mobile manipulators,” in 2023 IEEE International Con-
ference on Robotics and Automation (ICRA). 1EEE,
2023, pp. 12 149-12 155.

S. Jauhri, J. Peters, and G. Chalvatzaki, “Robot learning
of mobile manipulation with reachability behavior pri-
ors,” IEEE Robotics and Automation Letters, 2022.

J. Hu, P. Stone, and R. Martin-Martin, “Causal Pol-
icy Gradient for Whole-Body Mobile Manipulation,” in
Proceedings of Robotics: Science and Systems, Daegu,
Republic of Korea, July 2023.

T. Li, J. Truong, J. Yang, A. Clegg, A. Rai, S. Ha,
and X. Puig, “Robotmover: Learning to move large
objects by imitating the dynamic chain,” arXiv preprint
arXiv:2502.05271, 2025.

C. Tang, B. Abbatematteo, J. Hu, R. Chandra, R. Martin-
Martin, and P. Stone, “Deep reinforcement learning for
robotics: A survey of real-world successes,” Annual
Review of Control, Robotics, and Autonomous Systems,
vol. 8, 2024.

[13]

[18]

Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body
control: learning a unified policy for manipulation and
locomotion,” in Conference on Robot Learning. PMLR,
2023, pp. 138-149.

T. He, J. Gao, W. Xiao, Y. Zhang, Z. Wang, J. Wang,
Z. Luo, G. He, N. Sobanbab, C. Pan et al., “Asap:
Aligning simulation and real-world physics for learn-
ing agile humanoid whole-body skills,” arXiv preprint
arXiv:2502.01143, 2025.

W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real
transfer in deep reinforcement learning for robotics: a
survey,” in 2020 IEEE symposium series on computa-
tional intelligence (SSCI). 1EEE, 2020, pp. 737-744.
C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava,
R. Martin-Martin, C. Wang, G. Levine, M. Lingelbach,
J. Sun et al., “Behavior-1k: A benchmark for embodied ai
with 1,000 everyday activities and realistic simulation,”
in Conference on Robot Learning. PMLR, 2023, pp.
80-93.

Y. Liu, H. Xu, D. Liu, and L. Wang, “A digital
twin-based sim-to-real transfer for deep reinforcement
learning-enabled industrial robot grasping,” Robotics and
Computer-Integrated Manufacturing, vol. 78, p. 102365,
2022.

A. Gupta, J. Yu, T. Z. Zhao, V. Kumar, A. Rovinsky,
K. Xu, T. Devlin, and S. Levine, “Reset-free reinforce-
ment learning via multi-task learning: Learning dexterous
manipulation behaviors without human intervention,” in
2021 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2021, pp. 6664-6671.

L. Smith, I. Kostrikov, and S. Levine, “A walk in the
park: Learning to walk in 20 minutes with model-free re-
inforcement learning,” arXiv preprint arXiv:2208.07860,
2022.

J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma,
S. Schaal, C. Finn, A. Gupta, and S. Levine, “Serl: A
software suite for sample-efficient robotic reinforcement
learning,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2024, pp.
16961-16 969.

J. Yang, M. S. Mark, B. Vu, A. Sharma, J. Bohg, and
C. Finn, “Robot fine-tuning made easy: Pre-training re-
wards and policies for autonomous real-world reinforce-
ment learning,” in 2024 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2024, pp.
4804—4811.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Di-
versity is all you need: Learning skills without a reward
function,” arXiv preprint arXiv:1802.06070, 2018.

Z. Wang, J. Hu, C. Chuck, S. Chen, R. Martin-Martin,
A. Zhang, S. Niekum, and P. Stone, “Skild: Unsuper-
vised skill discovery guided by factor interactions,” arXiv
preprint arXiv:2410.18416, 2024.

S. Park, K. Lee, Y. Lee, and P. Abbeel, “Controllability-
aware unsupervised skill discovery,” 2023. [Online].
Available: https://arxiv.org/abs/2302.05103

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

J. Hu, Z. Wang, P. Stone, and R. Martin-Martin, “Dis-
entangled unsupervised skill discovery for efficient hi-
erarchical reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 37, pp. 76529—
76552, 2024.

H. Xiong, R. Mendonca, K. Shaw, and D. Pathak, “Adap-
tive mobile manipulation for articulated objects in the
open world,” 2024.

A. Herzog, K. Rao, K. Hausman, Y. Lu, P. Wohlhart,
M. Yan, J. Lin, M. G. Arenas, T. Xiao, D. Kappler, D. Ho,
J. Rettinghouse, Y. Chebotar, K.-H. Lee, K. Gopalakrish-
nan, R. Julian, A. Li, C. K. Fu, B. Wei, S. Ramesh,
K. Holden, K. Kleiven, D. Rendleman, S. Kirmani,
J. Bingham, J. Weisz, Y. Xu, W. Lu, M. Bennice,
C. Fong, D. Do, J. Lam, Y. Bai, B. Holson, M. Quinlan,
N. Brown, M. Kalakrishnan, J. Ibarz, P. Pastor, and
S. Levine, “Deep 1l at scale: Sorting waste in office
buildings with a fleet of mobile manipulators,” 2023.

C. Sun, J. Orbik, C. M. Devin, B. H. Yang, A. Gupta,
G. Berseth, and S. Levine, “Fully autonomous real-world
reinforcement learning with applications to mobile ma-
nipulation,” in Conference on Robot Learning. PMLR,
2022, pp. 308-319.

R. Mendonca, E. Panov, B. Bucher, J. Wang, and
D. Pathak, “Continuously improving mobile manipu-
lation with autonomous real-world rl,” arXiv preprint
arXiv:2409.20568, 2024.

S. Dass, W. Ai, Y. Jiang, S. Singh, J. Hu, R. Zhang,
P. Stone, B. Abbatematteo, and R. Martin-Martin, “Tele-
moma: A modular and versatile teleoperation system for
mobile manipulation,” arXiv preprint arXiv:2403.07869,
2024.

Y. Jiang, R. Zhang, J. Wong, C. Wang, Y. Ze, H. Yin,
C. Gokmen, S. Song, J. Wu, and L. Fei-Fei, “Behavior
robot suite: Streamlining real-world whole-body manip-
ulation for everyday household activities,” arXiv preprint
arXiv: 2503.05652, 2025.

Z. Fu, T. Z. Zhao, and C. Finn, “Mobile aloha: Learning
bimanual mobile manipulation with low-cost whole-body
teleoperation,” arXiv preprint arXiv:2401.02117, 2024.
J. Li, Y. Zhu, Y. Xie, Z. Jiang, M. Seo, G. Pavlakos, and
Y. Zhu, “Okami: Teaching humanoid robots manipulation
skills through single video imitation,” in 8th Annual
Conference on Robot Learning, 2024.

H. Seraji, “A unified approach to motion control of mo-
bile manipulators,” The International Journal of Robotics
Research, vol. 17, no. 2, pp. 107-118, 1998.

Y. Yamamoto and X. Yun, “Coordinating locomotion
and manipulation of a mobile manipulator,” in [/992]
Proceedings of the 31st IEEE Conference on Decision
and Control. 1EEE, 1992, pp. 2643-2648.

L. Sentis and O. Khatib, “A whole-body control frame-
work for humanoids operating in human environments,”
in ICRA, 2006, pp. 2641-2648.

A. Dietrich, T. Wimbock, A. Albu-Schaffer, and
G. Hirzinger, “Reactive whole-body control: Dynamic

[43]

[46]

mobile manipulation using a large number of actuated
degrees of freedom,” IEEE Robotics & Automation Mag-
azine, vol. 19, no. 2, pp. 20-33, 2012.

E. Papadopoulos and J. Poulakakis, “Planning and
model-based control for mobile manipulators,” in Pro-
ceedings. 2000 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2000)(Cat. No.
00CH37113), vol. 3. IEEE, 2000, pp. 1810-1815.

J. Haviland, N. Siinderhauf, and P. Corke, “A holistic ap-
proach to reactive mobile manipulation,” IEEE Robotics
and Automation Letters, vol. 7, no. 2, pp. 3122-3129,
2022.

J. Pankert and M. Hutter, “Perceptive model predictive
control for continuous mobile manipulation,” IEEE RAL,
vol. 5, no. 4, pp. 6177-6184, 2020.

Q. Huang, K. Tanie, and S. Sugano, “Coordinated motion
planning for a mobile manipulator considering stability
and manipulation,” The International Journal of Robotics
Research, vol. 19, no. 8, pp. 732-742, 2000.

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa,
“Chomp: Gradient optimization techniques for efficient
motion planning,” in 2009 IEEE International Confer-
ence on Robotics and Automation. 1EEE, 2009, pp.
489-494.

J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp:
Optimized path planning for robots with motion uncer-
tainty and imperfect state information,” The International
Journal of Robotics Research, vol. 30, no. 7, pp. 895—
913, 2011.

M. Stilman, “Global manipulation planning in robot
joint space with task constraints,” IEEE Transactions on
Robotics, vol. 26, no. 3, pp. 576-584, 2010.

H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body
motion planning with centroidal dynamics and full kine-
matics,” in IEEE-RAS International Conference on Hu-
manoid Robots. 1EEE, 2014, pp. 295-302.

F. Burget, A. Hornung, and M. Bennewitz, “Whole-body
motion planning for manipulation of articulated objects,”
in 2013 IEEE International Conference on Robotics and
Automation. 1EEE, 2013, pp. 1656—1662.

J. Wolfe, B. Marthi, and S. Russell, “Combined task and
motion planning for mobile manipulation,” in Twentieth
international conference on automated planning and
scheduling (ICAPS), 2010.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and
S. Schaal, “Stomp: Stochastic trajectory optimization for
motion planning,” in 2011 IEEFE international conference
on robotics and automation. 1EEE, 2011, pp. 4569—
4574.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

R. C. Julian, E. Heiden, Z. He, H. Zhang, S. Schaal,
J. J. Lim, G. S. Sukhatme, and K. Hausman, “Scaling
simulation-to-real transfer by learning a latent space
of robot skills,” The International Journal of Robotics

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Research, vol. 39, no. 10-11, pp. 1259-1278, 2020.

J. Zhang, M. Heo, Z. Liu, E. Biyik, J. J. Lim,
Y. Liu, and R. Fakoor, “Extract: Efficient policy learning
by extracting transferable robot skills from offline
data,” 2024. [Online]. Available: https://arxiv.org/abs/
2406.17768

P. Yin, T. Westenbroek, S. Bagaria, K. Huang,
C. an Cheng, A. Kobolov, and A. Gupta, “Rapidly
adapting policies to the real world via simulation-
guided fine-tuning,” 2025. [Online]. Available: https:
/larxiv.org/abs/2502.02705

P. J. Ball, L. Smith, I. Kostrikov, and S. Levine, “Effi-
cient online reinforcement learning with offline data,” in
International Conference on Machine Learning. PMLR,
2023.

D. Barber and F. Agakov, “Information maximization
in noisy channels: A variational approach,” Advances in
Neural Information Processing Systems, vol. 16, 2003.
J. Choi, A. Sharma, H. Lee, S. Levine, and S. S.
Gu, “Variational empowerment as representation learning
for goal-conditioned reinforcement learning,” in Interna-
tional conference on machine learning. PMLR, 2021,
pp- 1953-1963.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker,
S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel
et al., “Soft actor-critic algorithms and applications,”
arXiv:1812.05905, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” nature, vol. 518,
no. 7540, pp. 529-533, 2015.

P. Christodoulou, “Soft actor-critic for discrete action
settings,” arXiv preprint arXiv:1910.07207, 2019.

E. Jang, S. Gu, and B. Poole, “Categorical repa-
rameterization with gumbel-softmax,” arXiv preprint
arXiv:1611.01144, 2016.

C. Li, F. Xia, R. Martin-Martin, M. Lingelbach, S. Sri-
vastava, B. Shen, K. E. Vainio, C. Gokmen, G. Dharan,
T. Jain et al., “igibson 2.0: Object-centric simulation for
robot learning of everyday household tasks,” in Confer-
ence on Robot Learning. PMLR, 2022, pp. 455-465.
C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet:
Deep learning on point sets for 3d classification
and segmentation,” 2017. [Online]. Available: https:
/larxiv.org/abs/1612.00593

J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari,
R. Sullivan, L. S. Santos, C. Dieffendahl, C. Horsch,
R. Perez-Vicente et al., “Pettingzoo: Gym for multi-agent
reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 34, pp. 15032-15043, 2021.
P-L. Bacon, J. Harb, and D. Precup, “The option-critic
architecture,” in Proceedings of the AAAI conference on
artificial intelligence, 2017.

M. FISCHLER AND, “Random sample consensus: a
paradigm for model fitting with applications to image

analysis and automated cartography,” Commun. ACM,
vol. 24, no. 6, pp. 381-395, 1981.

APPENDIX

A. Policy and Training Visualizations

We encourage the reader to visit our project website (https://
robo-rl.github.io/) for full videos of the SLAC training process
in the real world and the learned policies.

B. Limitations and Future Works

Despite its strong empirical performance, SLAC is not
without limitations. First, SLAC introduces an implicit trade-
off related to the granularity of the latent action space. For
example, an identity mapping between the robot’s raw action
space and latent action space would make the downstream
task policy capable of learning any task within the original
capability of the robot, but would significantly reduce the
sample efficiency (as shown in our results in Sec. IV-A).
Similarly, the temporal length of each latent action entails
another tradeoff, where shorter latent actions give more control
to the task policy at the expense of longer task horizons,
which may hamper learning (as shown in our ablation studies
in Sec. IV-B). It is likely that the optimality of the latent
action space will be strongly task-dependent. Second, in the
current SLAC framework, the latent action decoder is kept
fixed during downstream learning. However, for more fine-
grained tasks, we might benefit from finetuning the latent
action decoder while training the task policy. While this is
conceptually doable via the option framework [63], we leave
the empirical study of how to implement it in a stable manner
to future work. Finally, while this paper primarily focuses
on the algorithmic side of real-world learning, we expect
future engineering efforts in the automation of task reset
and downstream reward generation (e.g., via VLM/LLM or
a learned reward function) to further boost the downstream
learning efficiency.

C. Q Decomposition Proof
We provide proof the equation Qr(s,z) = > i, Qi (s, 2)

discussed in Sec. III-B, using the linearity of expectations:

Proof.
Qn(s,2) =Eg [Z ']
t=0

=Ex [Z Z ']
i=1 t=0

Er [Z '

1 t=0

Qn(s,2)

M-

o
Il

~
Il
—

D. Properties of the Learned Latent Action Space

Here, we discuss in detail the properties of the learned
SLAC latent action space. In short, the latent action space
of SLAC is environment-aware but task-agnostic. It is task-
agnostic because it is trained without a task reward, and is
only encouraged to induce diversity in behavior following the
USD objective. Therefore, the same latent action space can
tackle different tasks within a particular environment (e.g.,
the “push to tray” and “sweep to bag” tasks in our experiment
utilize the same latent action space). On the other hand, the
latent action space is environment-aware because it is trained
to induce diverse behavior in a particular scene in simulation.
Note that our latent action space is robust to small variance
in the environment: for example, the action space learned
in the board environment can be used to learn policies that
wipe marks and avoid the trash can, even though there is
neither a trash can nor wipeable marks in the simulated board
environment.

E. Universal Safety Reward

In SLAC, we employ a universal safety reward for ensuring
that the learned latent action space is safe. This reward is the
same across all our environments, and is defined as follows:

Tsafe = =1 ||al|? =Az]|a—aprev [|* = A3 -Leotiision—Aa-Ir=70 (7)

In our experiments, we set Ay = 0.01, Ao = 0.1, \3 = 0.2,
and A4 = 0.05. Additionally, we incorporate a shaping reward
that encourages the robot to stay close to the board / table and
find it to speed up training.

F. SLAC Unsupervised Latent Action Space Learning Pseu-
docode

Here, we omit standard SAC steps, such as target network
creation and update, for simplicity.

G. SLAC Real-World Downstream RL Pseudocode

Again, we omit standard SAC steps, such as target network
creation and update, for simplicity.

H. Hyperparameter

Here, we present the hyperparameter for both the latent
action decoder training and the downstream task learning. The
same hyperparamters are shared across all tasks. We use a low-
level step size steps_per_skill = 50 for all our experiments.

1. Discrete vs Continuous Latent Actions

The SLAC framework supports both discrete and continuous
latent action. In our experiments, we made a deliberate choice
to use a discrete latent action space since a discrete latent ac-
tion space encodes a compact set of distinguishable behaviors,
making it more amenable to hierarchical downstream RL. This
is also a standard design choice of previous unsupervised skill
discovery methods [22, 24, 25].

Algorithm 1: SLAC Unsupervised Latent Action
Space Learning

1 Initialize sim environment, skill prior distribution
p(z), replay buffer Dgy;

Initialize latent action decoder 7 4., discriminators gy,
¢y and value function Q) gec;

for k + 1 to skill_learning_epochs do

N

3
4 Sample skill z ~ p(z);
5 for j < 1 to steps_per_skill do
6 (0decs @y 0 dgec) < sim. step(Tgec(a |
Odec Z)):
7 Store transition (0gec, a, 2, 0’ gec) into replay
buffer Dyy;
8 for i < 1 to n_updates do
9 Sample mini-batch {(04ec, @, 2, 0’ gec } from
Dy
10 [Optional] Update g4 and gy;
11 Calculate intrinsic reward r based on Eq. 5;
12 Update @ 4. with r using SAC critic
update;
13 Update 7 4. with @ ge. using SAC policy
update;

14 return 7.

Algorithm 2: FLA-SAC for Real-World Downstream
Task Learning

1 Initialize replay buffer D, task policy a5k (2 | 0),
factored Q-functions {Q'}™ ;

Load pre-trained latent action decoder 7 4¢., binary
dependency matrix B ;

3 for k < 1 to task_learning_steps do

4 2z Tiask(2] 0) 3

5 Tsum < [O]m 5

6

7

[S]

for t < 1 to Steps_per_skill do

(0dec, 7 = [r']iLy,0") =
robot.real_world_step(mge.(a |

Odecy 2));

8 | Tsum = Tsum +7r;

9 Store (0, z, 7sum, ') into replay buffer D;

10 for j < 1 to utd_ratio do

11 Sample mini-batch {(o, z,7,0')} from D with
small batch size;

12 Update Q°(o, B; ® z) with r; in parallel for all
t=1,...,m;

13 Update 5% (2 | 0) with @ =Y, Q° using

SAC loss, with 2 sampled via
Gumbel-Softmax (Eq. 6) for differentiability;

14 return 7.,k

TABLE II: Hyperparameters of Latent Action Decoder Learn-
ing.

Name Value
optimizer Adam
activation functions ReLu
learning rate 1x107*
batch size 1024
critic target T 0.01
SAC MLP size [1024, 1024]
n updates 2
of environments 16
entropy coefficient o 0.0
log std bounds [-10, 2]
warmup samples 24000
latent action dimension 4°

TABLE III: Hyperparameters of Downstream Learning.

Name Value
optimizer Adam
activation functions ReLu
learning rate 4x107*
batch size 64
critic target T 0.05
FLA-SAC MLP size [256, 256]
utd ratio 10
of environments 1
entropy coefficient o 0.1
log std bounds [-10, 2]
warmup samples 60
gumbel temperature 1.0

J. Environment Description

In this section, we describe the two mobile manipulation
environments that we tested SLAC on. In each environment,
we apply our method to solve two different downstream tasks.
We visualize the environments and the downstream tasks in
Fig. 1. In both environments, the robot has a 17-dimensional
action space, corresponding to base velocity (3d), head camera
joint position (2d), right end-effector delta pose (6d) and left
end-effector delta pose (6d). The observation space of the task
policy consists of a 320x240 RGBD image that is segmented
and down-sampled to 50 points, and a 7-dimensional vector
corresponding to the proprioceptive data. For all downstream
tasks, we employ a relatively sparse reward that is only given
at the end of a high-level policy step.

1) Board Environment: Simulation In the board envi-
ronment, the robot is initialized in front of an interactable
whiteboard. The decoder observation og4.. consists of the
proprioceptive data of the robot, the robot’s previous action,
the robot’s distance and relative orientation with the board
(which we estimate in the real world via a simple RANSAC
line detector [64]), and the end effector’s contact history with
the board. The latent action space is trained to maximize
empowerment for the following state entities: board contact
history, robot base position, robot view, and board contact
force.

Downstream Task 1: Clean Whiteboard The Clean White-
board task requires the robot to identify the location of the
board that needs to be wiped, and then use a sponge to clean
up the identified region. Specifically, we define a composite
task reward function with the following terms: 1) Encourage
the robot to look at the target marker to wipe. 2) Encourage the
successful removal of the target marker. 3) Encourage the robot
to move towards the target marker. 4) Penalize large contact
forces and any collision. The task is considered successful if
all four conditions are successfully achieved.

Downstream Task 2: Wipe Board over Obstacles The
Wipe over Obstacles task is conceptually similar to the Clean
Whiteboard task, except that now there is an obstacle between
the robot and the board. Thus, the robot needs to additionally
learn to keep a reasonable distance from the obstacle and still
be able to wipe the mark. The reward function is the same as
Clean Whiteboard.

2) Table Environment: Simulation In the table environ-
ment, the robot is initialized in front of a table. The table is not
interactive, but would incur a penalty if the robot collides with
it. The decoder observation o4, consists of the proprioceptive
data of the robot, the robot’s previous action, and the robot’s
distance and relative orientation with the table (which we again
estimate in the real world via RANSAC [64]). The latent action
space is trained to maximize empowerment for the following
state entities: robot left and right eef position relative to the
table, robot base position, and robot view.

Downstream Task 3: Push Garbage on the Table to
the Tray The Push to Tray task requires the robot to push
some garbage on the table in a tray that is also placed on the
table. The reward function consists of the following terms: 1)
Encourage the robot to look at the location of the garbage. 2)
Encourage successfully pushing the garbage into the tray. 3)
Encourage the robot to move towards the garbage. 4) Penalize
large contact forces and any collision.

Downstream Task 4: Sweep Garbage from the Table to
the Bag For the Sweep to Bag task, the robot is initialized with
a bag in its left gripper. The goal of the task is to sweep the
garbage into the bag, which requires the coordinative control
of both robot arms and the base. The reward function consists
of the following terms: 1) Encourage the robot to look at the
location of the garbage. 2) Encourage successfully pushing the
garbage off the table. 3) Encourage the robot to move its base
towards the garbage. 4) Encourage the bag to be close to the
garbage. 5) Penalize large contact forces and any collision.

K. Discussion of Broader Areas Related to SLAC

In this section, we discuss SLAC’s relation to two additional
areas: planning & control, and learning from demonstrations.

Classical Motion Planning and Control: A traditional way
to enable robots to perform tasks is through motion planning
and control. In practice, however, uncertainty and inaccuracy
in localization frequently impede the accurate execution of
planned trajectories [44—48]. Moreover, when the robot needs
to consider multiple objectives, creating a motion planner is
even harder, as it requires solving complex multi-objective

optimization problems [41-43]. On the side of control, existing
methods [34-40] resort to sophisticated prioritized solutions
that require extensive tuning and pre-determined task prior-
ities. Moreover, these methods assume accurate models of
the robot and the environment, which often break in unstruc-
tured environments and with high-dimensional sensor signals
(e.g. images). By comparison, SLAC can autonomously learn
closed-loop policies only based on onboard sensors, and does
not require prior domain knowledge.

Learning from Demonstrations: Recently, learning from
demonstration has gained popularity as a powerful paradigm
for learning robot behaviors, particularly for tabletop manip-
ulation [1-3]. As robot systems get more and more complex,
however, collecting high-quality data can quickly become
challenging due to high-degree-of-freedom embodiments that
require coordinated control. Even with carefully designed
systems that only work for very specific embodiments [30-33],
getting enough data for imitation learning remains hard and
costly, especially for dynamic and contact-rich tasks. SLAC
does not require any demonstrations, and potentially can be
applied to learn a wide range of tasks through autonomous
interactions with the environment.

