
Few-Shot Learning of Tool-Use Skills with
Proximity and Tactile Sensing

Marina Y. Aoyama1, Sethu Vijayakumar2, and Tetsuya Narita3

Abstract— Teaching robots to use tools is challenging due to
simultaneous robot–tool and tool–environment contacts. Tactile
and proximity sensors are crucial for detecting these interac-
tions; however, learning tool manipulation with these sensors
remains difficult given limited real-world data and a large
sim-to-real gap. We propose a few-shot tool-use skill transfer
framework that leverages multimodal sensing by pre-training a
base policy in simulation to capture contact states common to
tool-use skills, and fine-tuning it with a small number of human
demonstrations in the real-world target domain. We validate
our approach on surface-following tasks with diverse tools
using the Franka Emika arm, demonstrating improved contact
recognition and rapid skill acquisition. Videos are available
at https://sony.github.io/tool-use-few-shot-transfer/.

I. INTRODUCTION

Tools extend the ability of robots to manipulate objects and
the environment [1–6]. This study focuses on manipulating
grasped tools, rather than fixing tools to the end-effector as
in most prior work [2–5]. The ability to manipulate grasped
tools allows robots to use tools designed for humans and to
seamlessly swap between them for different tasks.

Manipulation of grasped tools involves two types of con-
tact: intrinsic contact (between robot fingers and the tool)
and extrinsic contact (between the tool and the environ-
ment)[7]. While tactile sensors determine contact forces,
contact events, local geometries, and material properties
when they are in contact with the object or the environ-
ment [8], proximity sensors identify local geometries without
contact [9]. Despite these capabilities, there are currently no
sensors capable of directly measuring extrinsic contact. The
challenge is to use multiple indirect sensor sources to identify
interactions between tools and environments.

Furthermore, accurate models and simulations of de-
formable tools are often unavailable. Several recent works
control extrinsic contacts between a tool [10] or object [11,
12] and the environment, but they are limited to rigid objects
on flat surfaces. Learning from Demonstration (LfD) [13]
provides a viable approach, however, collecting sufficient
demonstrations is time-consuming and limited by tool and
environment variations. Van der Merwe et al. and Zhang et
al. propose learning contact states from interaction data [14,
15], enabling manipulation of deformable tools on non-

1School of Informatics, The University of Edinburgh, Edinburgh, U.K.,
work conducted during internship at Sony Group Corporation, Japan.

2School of Informatics, The University of Edinburgh, Edinburgh, U.K.,
partially funded by the Moonshot R&D Program (Grant No. JPMJMS2031)

3Sony Group Corporation, Japan.
We gratefully acknowledge Takahisa Ueno for his support with the setup

of simulation and hardware.

Fig. 1: Tool manipulation using tactile and proximity sensors,
involving two points of contact.

flat surfaces, however, these approaches, are limited to the
manipulation of the tools used during training.

We, therefore, propose a multimodal few-shot tool-use
skill transfer framework that pre-trains a base policy in
simulation and fine-tunes it with a few human demonstra-
tions. The key idea is to leverage inexpensive simulated
data while bridging the gap to the real target domain with
human demonstrations. While the proposed framework is a
general multimodal approach, we focus on the combined use
of tactile and proximity sensors for tool-use skill acquisition.

In summary, our contributions are:
• addressing the challenge of learning deformable tool-

use skills involving intrinsic and extrinsic contact,
• proposing a data-efficient approach combining tactile

and proximity sensing with pre-training in simulation
and few-shot fine-tuning with human demonstrations,

• validating the proposed method on surface-following
tasks with diverse tools on a physical robot, without
fixing the tool to the end-effector.

II. PROBLEM FORMULATION

We address the problem of learning tool-use skills involv-
ing two locations of contact: one between the robot and the
tool, and the other between the tool and the environment,
as illustrated in Fig. 1. We consider a scenario where the
physical and geometric properties of the tool and surface are
unknown a priori. Additionally, as the desirable contact force
between the tool and the environment depends on the task,
the robot needs to learn this force from demonstrations of the
target task. In this study, we focus on surface-following tasks
such as painting with a brush and sweeping with a broom.

III. METHOD

To enable learning of new tool-use skills from a limited
number of demonstrations, we propose a few-shot tool-

https://sony.github.io/tool-use-few-shot-transfer/


Fig. 2: Few-shot tool-use skill transfer framework.

use skill transfer framework. This framework involves pre-
training the base policy using primitive motions in simulation
and fine-tuning it with human demonstrations of downstream
tasks using the target tool in the real world to bridge the gap.

A. Pre-training base policy

We first train the base policy πb by leveraging a large
amount of data Dprim = {τ1, · · · τN}, where τ =
{(x0, u0), (x1, u1), . . . , (xT , uT )} collected through primi-
tive motions in simulation. Here, N denotes the number of
trajectories, and T represents the number of timesteps in each
trajectory τ . By performing this set of primitive motions
repeatedly in simple simulated environments with varying
conditions, we expect the base policy πb to recognise contact
states between the tool and the environment from multi-
modal sensor observations and to capture motions common
in tool-use skills, transferable across tasks. We highlight that
every new task with a new tool, environment, or task goal
shares this single base policy, as illustrated in Fig. 2.

For this, we adopt the Sequence-to-Sequence (Seq2Seq)
model [16–18]. The model employs an encoder-decoder
structure using Long Short-Term Memory (LSTM), as il-
lustrated in Fig. 3. This encoder-decoder structure offers key
advantages for our framework. The encoder acts as a feature
extraction module, capturing latent representations of contact
dynamics, decoupled from motion generation, enabling the
reuse of the feature extraction module across tasks. Then,
we can fine-tune the decoder, a motion generation module,
for task-specific motion generation. To achieve this, we train
the model on primitive data by minimising a combined state
and action prediction loss (see Appendix A for details).

B. Few-shot fine-tuning using demonstration

Subsequently, we fine-tune the pre-trained base policy πb to
obtain the fine-tuned policy πtask using a small amount of
demonstration data Dtask specific to each new downstream
task. This step allows adaptation to differences in tool prop-
erties, environments, percepts, and task goals, bridging the
gap from pre-trained to the target downstream task domain.

To prevent overfitting with limited demonstrations, we
fine-tune only the fully connected (FC) layer of the decoder,
keeping all other layers in both the encoder and decoder
frozen. Therefore, while the primary role of the decoder
during pre-training is motion generation, we expect the
updated weights of ωdec to adapt not only to differences

Fig. 3: Seq2Seq architecture of the tool-use skill policy. The
feature extraction module captures the contact relationship
between the robot, tool, and environment by predicting
next states. The motion generation module predicts the next
desired actions to perform the task.

in task goals and motions but also to domain differences,
such as tool properties and other gaps between the pre-
trained and target task domains. We achieve this adaptation
by incorporating both state prediction and action prediction
losses, as shown in LfD loss

ˆωdec = argmin
ωdec

L (xt:t+Tn
, ut:t+Tn

) (1)

= EMSE

(
x̂t:t+Tn

, x∗t:t+Tn

)
+ βEMSE

(
ût:t+Tn

, u∗t:t+Tn

)
.

C. Task execution

At test time, the robot predicts the next desired actions
ût:t+Tn

based on past sensor observations xt−Tp:t−1 using
the fine-tuned policy πtask to perform the downstream task.
At each timestep, the robot executes only the action for the
next step while predicting actions for the next Tn steps.

IV. EXPERIMENTAL SETUP
We conducted our experimental evaluation on surface-

following tasks using tools with varying geometric and
physical properties, in simulation and on a physical setup.

Fig. 4 depicts the experimental setup and sensor config-
urations. Inside each fingertip, we attach tactile sensors [19]
with 4 by 4 elastic hemispheres placed on 12 by 12 pressure
sensor nodes, providing the 3-axis force estimates at each
hemisphere by measuring its distortion. In simulation, we use
3-axis force sensors arranged in a corresponding 4 by 4 con-
figuration as an approximate match. For both simulated and
real tactile observations, we pre-process 3-axis forces from
each fingertip, denoted as xtac, into shear forces xshear ∈ R2

and translational and rotational slip xslip ∈ R3, following the
theory of translational and rotational slip [19]. Additionally,
we place six Time Of Flight proximity sensors on the right
fingertip, oriented to look down at the environment. We
provide details of the tasks, system design, data collection,
and model training in Appendix B.

V. RESULTS AND DISCUSSION
We evaluate the ability of the proposed few-shot tool-use

skill transfer framework to adapt the motion for new tools



Fig. 4: Experimental setup.

and target tasks with only a few demonstrations. We provide
details of the baselines and evaluation metrics in Appendix C.

A. Does the tool-use skill policy, fine-tuned with demonstra-
tions, improve the performance of downstream tasks?

First, we evaluated our approach in two test cases using
the simulated environments ”Inclined” and ”Stairs”. For the
inclined surface, the task involved wiping an inclined surface
with a desired force of 0.5N, which differed from the 0.3N
used during pre-training. In the ”Stairs” environment, the
task was to wipe a surface with stairs instead of a single
step seen in the pre-training phase.

In both environments, ”Finetuned” achieved the highest
task performance compared to the baselines (”Demo only”
and ”No FT”) as well as the alternative methods ”GP” and
”DAgger,” as depicted in Table I. Fig. 5a illustrates that
”Demo only” failed to achieve the desired force due to insuf-
ficient demonstrations. In contrast, ”Finetuned” successfully
achieved the new desired contact force, different from the
desired force used in pre-training. Fig. 5b shows the end-
effector position in the z-direction as well as the contact
force in the normal direction while wiping stairs using the
fine-tuned policy. The red shading indicates the contact of
the tool tip with the wall, and the blue indicates the flat
region (i.e., no contact of the tool tip with the wall). We
observed that the fine-tuned policy detects the contact of the
tool tip with the wall, leading to successful lifting of the
tool, and returns to the desired contact force (i.e., 0.3N in
this case) when reaching the flat region. We also evaluated
the generalisability of the policy fine-tuned on a different
tool instance with a longer handle (5cm vs. 3cm) and softer
tip (stiffness 10 vs. 30) (FT (diff. tool) in Table I); while
this policy outperformed the baselines, the one fine-tuned
on the target tool achieved the lowest error, highlighting the
importance of task-specific fine-tuning.

Second, we evaluated our approach in two real-world en-
vironments: ”Inclined” and ”Step”, using four different tools.
In both environments, the robot needs to adapt its motions to
real tools with various properties that are inherently different
from those used in simulation, while also accounting for the
sim2real gap in sensing. Additionally, the robot needs to
achieve a new target contact force required for each task, as
demonstrated by a human. Table IIa and Table IIb display the
Root Mean Squared Error (RMSE) of the inclination and the

Env. Evaluation
Criteria

Demo
only

No
FT

FT
(diff. tool) GP DAgger Finetuned

Inclined

RMSE of
slope (rad) ↓

0.073
± 0.002

0.041
± 0.006

0.038
± 0.003

0.095
± 0.007

0.072
± 0.005

0.040
± 0.005

RMSE of
force (N) ↓

0.68
± 0.06

0.22
± 0.01

0.17
± 0.02

0.61
± 0.05

0.62
± 0.07

0.11
± 0.02

Stairs Wiped
area (%) ↑

45.0
± 3.50

49.7
± 2.31

53.1
± 2.98

43.3
± 4.01

51.1
± 3.80

59.2
± 4.31

TABLE I: Comparison of RMSE when transferring the pre-
trained tool-use skill to a new task (i.e., with a new target
force) and to a more complex environment (i.e., stairs).

(a) Inclined (b) Stairs
Fig. 5: End-effector motion and contact force profile.

contact force, respectively, for four downstream tasks. In all
cases, ”Finetuned” achieved a significant reduction in RMSE
compared to the baselines. We report task completion results
for each task in Appendix C.3. Furthermore, for the task of
painting a surface with a step, ”Finetuned” notably increased
the wiped area, as evidenced by the results in Table IIc.

B. How do proximity and tactile sensing contribute to tool
manipulation?

We investigated the contributions of each sensor modality
and configuration to surface-following tasks, as summarized
in Fig. 6 and Fig. 7.

In simulation, all modalities perform similarly in following
the desired inclination. However, proximity sensing alone
struggles to achieve the desired force on inclined surfaces and
to detect tool-tip contact on stairs, where tactile information
is essential. Additionally, the sensor configurations capturing
only intrinsic contact, as shown in Fig. 7(a)(1)-(3) performed
poorly across tasks, as indicated in Fig. 7(b)–(d). Combining
an array of proximity sensors and shear force from tactile
sensors which allows to capture both intrinsic and extrinsic
contact (Fig. 7(a)(4)) resulted in the lowest RMSE of contact
force on inclined surfaces and the largest wiped area on
stairs. These results underscore the importance of our sensor
configurations and learning framework combining both sens-



Tool Demo only No FT Fintuned
x σ x σ x σ

Small brush 0.41 0.16 0.25 0.07 0.17 0.02
Sponge 0.30 0.12 0.29 0.01 0.17 0.03

Wide brush 0.18 0.04 0.37 0.12 0.10 0.02
Broom 0.84 0.33 0.66 0.37 0.12 0.05

(a) RMSE of the inclination followed by the end-effector (↓).

Tool Demo only No FT Fintuned
x σ x σ x σ

Small brush 0.041 0.006 0.031 0.011 0.014 0.002
Sponge 0.065 0.034 0.051 0.015 0.017 0.004

Wide brush 0.017 0.008 0.038 0.007 0.009 0.004
Broom 0.034 0.022 0.057 0.047 0.020 0.009

(b) RMSE of the normal contact force (↓).

Env. Demo only No FT Fintuned
x σ x σ x σ

Step 72.74 16.45 87.07 5.61 93.54 4.01

(c) Wiped area (↑).

TABLE II: Comparison of task performance using different
tools on ”Inclined” and ”Steps” surfaces on a physical setup.

(a) Inclination ↓ (b) Normal force Fz ↓ (c) Wiped area ↑

Fig. 6: Contribution of each modality.

ing to implicitly capture both intrinsic and extrinsic contact
for achieving the desired tool-environment contact.

In real-world environments, combining proximity and tac-
tile sensing significantly improved task performance in both
inclined and step environments compared to using either
sensor alone. While tactile sensing outperformed proximity
sensing in simulation, their performances were closer in
real-world scenarios, suggesting a larger sim-to-real gap and
higher sensor noise for tactile sensors in a physical setup.

C. How adaptive and robust are the learnt tool-use skills?

Finally, we qualitatively evaluated the online adaptability
of the learnt tool-use policy to changing environments. We
apply t-SNE to the LSTM encoder’s cell state ct ∈ R100 at
each timestep t for both training and testing data, with the
fixed hyperparameters: perplexity = 30, learning rate = 200,
number of iterations = 1000, and using Euclidean distance
as the metric. Fig. 8(1) and Fig. 8(3) show the t-SNE-
transformed cell states, with grey dashed lines illustrating
the transition of cell states in response to changing surface
inclination from -0.25 radians (down) to 0.0 radians (flat)
and to 0.25 radians (up) in simulation and real settings,
respectively. Similarly, the model updated cell states when
detecting tool-tip contact with walls in the stairs environment
in simulation (see Fig. 8(2)) and in the step environment in
physical setups (see Fig. 8(4)). This analysis, which shows

(a)
Configurations.

(b) Inclination
↓

(c) Normal
force Fz ↓

(d) Wiped
area↑

Fig. 7: Comparison of different sensor configurations. : (1)
proximity sensors inside the finger, (2) a single proximity
sensor, (3) normal force only, (4) proposed shear and slip
force with an array of proximity sensors.

Fig. 8: The t-SNE visualisation of cell state evolution in the
feature extraction module over time and the adaptation of
robot motion on the fly in simulated and physical setups.

that our policy can quickly update the contact state encoded
in the model’s cell states based on sensing feedback, supports
our quantitative results on successful adaptation when hitting
the wall in the ”Stairs” and ”Step” environments in Table I
and Table II. See Appendix C.4 for additional results on
online adaptation to surface changes.

VI. CONCLUSIONS

We present a few-shot tool-use transfer framework that
pre-trains in simulation and fine-tunes with limited human
demonstrations. Our approach enables robots to manipulate
grasped tools and adapt to varied environments by implicitly
identifying extrinsic contacts using tactile and proximity
sensing. Future work includes pre-training with diverse tools,
incorporating grip control to prevent slippage, and extending
to more complex tasks such as drawing and spreading butter.



REFERENCES

[1] M. Qin et al., “Robot tool use: A survey,” Front. Robot. AI., vol. 9,
Jan. 2023.

[2] M. Y. Aoyama et al., “Few-shot learning of force-based motions
from demonstration through pre-training of haptic representation,”
in ICRA1, 2024.

[3] N. Saito et al., “How to select and use tools? : Active perception of
target objects using multimodal deep learning,” RA-L2, vol. 6, no. 2,
pp. 2517–2524, 2021.

[4] P. Sundaresan et al., “Learning visuo-haptic skewering strategies for
robot-assisted feeding,” in 6th CoRL3, 2022.

[5] Y. Wi et al., “VIRDO++: Real-world, visuo-tactile dynamics and
perception of deformable objects,” in 6th CoRL3, 2022.

[6] K. Yamane et al., “Soft and rigid object grasping with cross-structure
hand using bilateral control-based imitation learning,” RA-L2, 2023.

[7] D. Ma et al., “Extrinsic contact sensing with relative-motion tracking
from distributed tactile measurements,” ICRA1, 2021.

[8] Q. Li et al., “A review of tactile information: Perception and action
through touch,” T-RO??, vol. 36, no. 6, pp. 1619–1634, 2020.

[9] S. E. Navarro et al., “Proximity perception in human-centered
robotics: A survey on sensing systems and applications,” T-RO??,
vol. 38, no. 3, pp. 1599–1620, 2022.

[10] Y. Shirai et al., “Tactile tool manipulation,” in ICRA1, 2023.
[11] S. Kim et al., “Simultaneous tactile estimation and control of

extrinsic contact,” in ICRA1, 2023.
[12] A. Bronars et al., “Texterity: Tactile extrinsic dexterity,” in ICRA1,

2024.
[13] A. Billard et al., “Robot programming by demonstration,” Springer

Handbook of Robotics, B. Siciliano et al., Eds., pp. 1371–1394, 2008.
[14] M. V. der Merwe et al., “Learning the dynamics of compliant tool-

environment interaction for visuo-tactile contact servoing,” in 6th
CoRL3, 2022.

[15] H. Zhang et al., “Interaction control for tool manipulation on
deformable objects using tactile feedback,” RA-L2, vol. 8, no. 5,
pp. 2700–2707, 2023.

[16] I. Sutskever et al., “Sequence to sequence learning with neural
networks,” NeurIPS4, vol. 27, 2014.

[17] K. Cho et al., “Learning phrase representations using rnn en-
coder–decoder for statistical machine translation,” in Conference on
Empirical Methods in Natural Language Processing, 2014.

[18] K. Kutsuzawa et al., “Sequence-to-sequence model for trajectory
planning of nonprehensile manipulation including contact model,”
RA-L2, vol. 3, no. 4, pp. 3606–3613, 2018.

[19] T. Narita et al., “Theoretical derivation and realization of adaptive
grasping based on rotational incipient slip detection,” in ICRA1, 2020.

[20] E. Todorov et al., “Mujoco: A physics engine for model-based
control,” in IROS??, 2012.

[21] K. Zakka et al., MuJoCo Menagerie: A collection of high-quality
simulation models for MuJoCo, 2022.

[22] N. Srivastava et al., “Dropout: A simple way to prevent neural
networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 1929–1958, 2014.

[23] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[24] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” NeurIPS4, 1988.

[25] M. Al-Shedivat et al., “Learning scalable deep kernels with recurrent
structure,” J. Mach. Learn. Res., vol. 18, no. 82, pp. 1–37, 2017.

[26] S. Ross et al., “A reduction of imitation learning and structured
prediction to no-regret online learning,” in Proc. of the 14th Int.
Conf. Artif. Intell. Stat., 2011.

APPENDIX

A. Method

1) Seq2seq model
The encoder serves as a feature extraction module. This

module encodes multi-modal sensor observations x from

1IEEE International Conference on Robotics and Automation.
2IEEE Robotics and Automation Letters.
3Annual Conference on Robot Learning.
4Advances in neural information processing systems.

the past Tp timesteps into latent representations consisting
of cell and hidden states by predicting the next Tn states
x̂t:t+Tn

. In our case, with tactile and proximity sensors, the
sensor observations x include xt−Tp

tac and xt−Tp
prox . The decoder

functions as the motion generation module, predicting the
desired actions uprimt:t+Tn

in specified in primitive motions for
the next Tn timesteps. We condition this motion generation
on the encoded contact states, which are passed from the
encoder’s cell and hidden states to the decoder.

2) Pre-training loss
We train the model on primitive data by minimising the

pre-training loss

θ̂, ϕ̂, ˆωenc, ˆωdec = argmin
θ,ϕ,ωenc,ωdec

L (xt:t+Tn , ut:t+Tn) (2)

= EMSE

(
x̂t:t+Tn

, xobst:t+Tn

)
+ βEMSE

(
ût:t+Tn

, uprimt:t+Tn

)
where θ and ωenc denote the parameters of the LSTM layer
and fully connected layer in the encoder, respectively, and
ϕ and ωdec represent the parameters of the LSTM layer and
fully connected layer in the decoder of the seq2seq model,
respectively, as shown in Fig. 3. The first term of the loss
function is the state prediction loss, which computes the
Mean Squared Error EMSE between the observed states
xobst:t+Tn

and the predicted states x̂t:t+Tn for the next Tn
time steps to train the feature extraction module. The second
term of the loss function is the action prediction loss,
which computes the Mean Squared Error EMSE between the
actions uprimt:t+Tn

observed during the execution of primitive
motions and the predicted actions ût:t+Tn for the next Tn
time steps to train the motion generation module. β is the
weight coefficient that balances the two loss terms.

B. Experimental setup

1) Tool-use tasks
In simulation, we designed a brush with a 3cm rigid handle

and a soft tooltip (2×3×3 capsules, 2.5cm spacing, stiffness
30 using MuJoCo’s composite API) for pre-training. We then
validated our proposed framework in real environments using
four different tools: a small brush, a wide brush, a sponge,
and a broom on a physical setup as depicted in Fig. 4. Each
tool had a soft material around the handle to ensure a stable
grasp. For the surfaces, we prepared two basic environments:
“Inclined,” which is a flat surface inclined at ψ = [−0.3, 0.3]
radians, and “Step” which has a step with a height of h =
[0.5, 5.0] cm in simulation. We tested in the ’Inclined’ and
’Step’ environments in the real world. Additionally, we tested
more complex environments, including ’Stairs’ with multiple
consecutive steps in simulation and ’Deforming Surface’ in
the real world.

2) System design and robot setup
We utilise a 7 Degrees of Freedom (DoF) Franka Emika

Panda robotic arm with a position controlled 2-finger parallel
gripper attached to its end-effector for both simulation and
real robot experiments. For the simulation setup, we utilise
the Mujoco physics engine [20, 21], configured to replicate
the physical robot setup. At the start of each trial, the
robot grasps the tool handle near its centre, with a position



shift sampled from N (0, 1) cm, by closing the gripper
until the normal force exceeds 5N, and then maintains a
fixed gripper width throughout the trial. The base and fine-
tuned policies output end-effector velocities in the x and
z directions, as shown in Eq. (3), which we convert to
end-effector positions and then map to joint configurations
using inverse kinematics to control the robot. We provide
demonstrations by kinaesthetically moving the robot arm in
gravity compensation mode.

3) Tactile and proximity sensors
Inside each fingertip, we attach tactile sensors [19] with 4

by 4 elastic hemispheres placed on 12 by 12 pressure sensor
nodes. The tactile sensors estimate the 3-axis force at each
hemisphere by measuring its distortion. In simulation, we use
3-axis force sensors arranged in a corresponding 4 by 4 con-
figuration as an approximate match. For both simulated and
real tactile observations, we pre-process 3-axis forces from
each fingertip, denoted as xtac, into shear forces xshear ∈ R2

and translational and rotational slip xslip ∈ R3, following
the theory of translational and rotational slip [19]. This
tactile representation, xtacproc =

(
xshear, xslip

)
, provides a

compact and meaningful low-dimensional tactile feature that
reduces the sim-to-real gap and enhances robustness against
variations in raw sensor values caused by slight changes
in grasp location or sensor noise. Additionally, we place
six Time Of Flight (ToF) proximity sensors on the right
fingertip, oriented to look down at the environment. Each
sensor measures the distance between itself and the closest
object as a scalar value.

4) Pre-training data collection via primitive motions
First, we collect primitive data Dprim for the surface-

following task in two basic environments, ”Inclined” and
”Step”, in simulation. For the surface-following task, we
define primitive motions along the x-axis as ux = uconstx ,
and along the z-axis as

uz =


uupz if Fx > F threshold

x (hitting wall)
udown
z elif Fz < 0.0 (out of contact)
α(F target

z − Fz) otherwise (in contact)
(3)

where we define the axis coordinates in the task frame,
as illustrated in Fig. 4. The robot moves its end-effector
at a constant velocity uconstx in the horizontal direction.
When it detects a collision with a wall, it moves the end-
effector up by uupz ; if out of contact, it moves the end-
effector down by udown

z to reestablish contact. Otherwise,
it adjusts the velocity of the end-effector in the normal
direction uz to achieve the specified target force F target

z ,
without tool slippage, given the current normal force Fz and
the scaling factor α. In our experiment, we set parameters to
uconstx = 0.3 cm/s, uupz = 0.5 cm/s, udown

z = −0.5 cm/s,
F threshold
x = 0.5 N, F target

z = 0.3 N, and α = 0.1. We
collected 11 trajectories in the “Inclined” environment and
10 trajectories in the “Step” environment. For each trial, we
record the end-effector positions, tactile data (4× 4× 3 axes
for 2 fingertips), and proximity data (6 dim.) at a frequency
of 20 Hz over a duration of 10 seconds.

5) Demonstration data collection
We collect demonstration data Dtask to fine-tune the base

policy πb for learning the target task motion. For the sim-
ulated experiments, we collect 3 demonstration trajectories
each for (1) the new target force where F target

z = 0.5N
and (2) the stairs environment. For the physical robot ex-
periments, we collect 3 demonstration trajectories for each
downstream task, using different tools. We record the end-
effector positions, tactile data (4×4×3 axes for 2 fingertips),
and proximity data (6 dim.) at a frequency of 20 Hz for 10
seconds.

6) Seq2seq model training
The seq2seq model consists of 1 LSTM layer and 1 fully

connected layer in the encoder, and 1 LSTM layer and 1 fully
connected layer in the decoder. We apply dropout [22] to the
fully connected layers following the LSTM layers in both
the encoder and decoder to prevent over-fitting during pre-
training, with a dropout rate of 0.2. We set the dimensions
of the cell state and hidden state to c ∈ R100 and h ∈ R100,
respectively. We employ stochastic gradient descent [23] to
update the weights of the neural network. We normalise all
end-effector position data, shear force and slip data, and
proximity data to the range [−0.9, 0.9].

First, we pre-train the seq2seq model using primitive data
as detailed in Section III-A. We train the model for 2000
epochs at a learning rate of 0.001, utilising a loss function
defined in Eq. (2) with β = 0.1. It is important to note that
the collection of primitive data and the pre-training of the
base policy are only required once. This single pre-trained
model serves as the base policy for all downstream tasks.
After pre-training the base policy, we freeze the weights of
all layers in the encoder and the LSTM layer in the decoder.
For each task, we fine-tune the fully connected layer in the
decoder on demonstration data for 300 epochs at a learning
rate of 0.005 using the loss function Eq. (1).

C. Results and Discussion

1) Baseline
We compared our proposed approach, denoted as ’Fine-

tuned,’ with a behaviour cloning baseline, ”Demo only” [24],
which uses a policy trained solely on demonstration data
without any pre-training in simulation, and an ablated base-
line, ”No FT,” which uses the pre-trained policy without fine-
tuning in the target domain. We also included two alterna-
tive methods used in settings with limited supervised data:
Gaussian Processes (GP) with LSTM [25], to incorporate
temporal information for fair comparison, trained on demon-
stration data without pre-training; and Dataset Aggregation
(DAgger) [26], where we trained on pre-training data in the
first iteration, and on aggregated data—including additional
fine-tuning demonstrations as corrections—in the second.
In all approaches, we collected three demonstrations and
empirically tuned hyperparameters to minimise the training
loss.

2) Evaluation metrics
For the “Inclined” environment in Fig. 4, we computed:

1) the RMSE between the ground truth and the followed



Evaluation Simulation Physical setup
Metric Demo only No FT Finetuned Demo only No FT Finetuned

RMSE of
slope (rad) ↓

0.082
± 0.007

0.052
± 0.005

0.042
± 0.006

0.76
± 0.21

0.30
± 0.10

0.22
± 0.05

RMSE of
force (N) ↓

0.72
± 0.05

0.29
± 0.05

0.14
± 0.03

0.052
± 0.006

0.035
± 0.002

0.017
± 0.004

TABLE III: Task performance on online changing inclination
from -0.25 rad. (down) to 0.0 rad. (flat) and to 0.25 rad. (up).

inclination, and 2) the RMSE between the desired contact
force and the applied force to evaluate how effectively
the tool followed the surface geometry while applying the
desired force. We collected demonstration data for test cases
in addition to the training data to obtain the desired contact
force for evaluation. For surfaces with steps (i.e., ”Step”
and ”Stairs” in Fig. 4), the RMSE metrics were unsuitable
due to intentional tool lifting when hitting a step. Thus, we
used wiped area (%)—the contact area relative to the total
surface area—as the evaluation metric. Since demonstrations
aim to maximise the wiped area by quickly reestablishing
contact after lifting the tool, this metric reflects both imitation
accuracy and task completeness.

3) Task completion
In the ”small brush” painting task on a physical setup,

”Finetuned” painted 93.5 ± 1.68% of the surface, outper-
forming ”No FT” (87.1±1.61%) and ”Demo Only” (72.7±
4.75%). In the ”broom” task, it swept 8.0± 1.0 dust pieces
out of 10, compared to 2.7±1.53 for ”No FT” and 6.3±0.58
for ”Demo Only”.

4) Online adaptation
Table III shows the quantitative evaluation when online

adapting to changing inclination of the surface. Furthermore,
when the surface deformed as the robot wiped the paper, as
shown in the rightmost target environment in Fig. 4, the robot
successfully adapted its motion to the deforming surface.


	INTRODUCTION
	PROBLEM FORMULATION
	METHOD
	Pre-training base policy
	Few-shot fine-tuning using demonstration
	Task execution

	EXPERIMENTAL SETUP
	RESULTS AND DISCUSSION
	Does the tool-use skill policy, fine-tuned with demonstrations, improve the performance of downstream tasks?
	How do proximity and tactile sensing contribute to tool manipulation?
	How adaptive and robust are the learnt tool-use skills?

	CONCLUSIONS
	Appendix
	Method
	Seq2seq model
	Pre-training loss

	Experimental setup
	Tool-use tasks
	System design and robot setup
	Tactile and proximity sensors
	Pre-training data collection via primitive motions
	Demonstration data collection
	Seq2seq model training

	Results and Discussion
	Baseline
	Evaluation metrics
	Task completion
	Online adaptation



