
Developing Standards and Guidelines for Robot Grasping and Manipulation Pipelines

Goals: improve modularity and interoperability of 
open-source software components, lower the barrier 
to integration of open-source, and enhance 
reproducibility of functionality between labs

Component-level: recommendations for specifying 
dependencies and resolving compatibility issues (e.g., 
Conda environments, Docker containers) for many 
types of open-source software components

Pipeline-level: common interfacing techniques 
between components (e.g., input/output data formats, 
ROS service structure) both for execution of robot 
capabilities and benchmarking procedures

Create a greater cohesion between open-source 
products to increase modularity of software 
components in the robot manipulation pipeline

Collaborative Open-source Manipulation Performance Assessment for Robotics Enhancement (COMPARE) Ecosystem

Generate community-driven standards and guidelines 
for developing and using open-source, datasets, 
objects, tools, and benchmarking procedures

By increasing modularity, integration of multiple 
components becomes streamlined, enabling more 
effective and informative performance benchmarking

This work is supported by the National Science Foundation (TI-2346069)

Towards Improving Open-Source and Benchmarking for Robot Manipulation: 
The COMPARE Ecosystem

Engage with the COMPARE Ecosystem! 
We want your input and feedback! 

Collaborate with other researchers by joining the COMPARE Slack! Receive e-mails in your inbox by joining the COMPARE Google Group! or

1

2 5

3 4
Adam Norton* 1, Kostas Bekris 2, Berk Calli 3, Aaron Dollar 4, Brian Flynn 1, Ricardo Digiovanni Frumento 5, 

Shambhuraj Mane 3, Daniel Nakhimovich 2, Vatsal Patel 4, Yu Sun 5, Holly Yanco 1, Huajing Zhao 1, and Yifan Zhu 4

1 University of Massachusetts Lowell, Lowell, MA, USA; 2 Rutgers University, New Brunswick, NJ, USA
3 Worcester Polytechnic University, Worcester, MA, USA; 4 Yale University, New Haven, CT, USA

5 University of South Florida, Tampa, FL, USA; * Corresponding author: compare.ecosystem@gmail.com

Grasp Planning
• Grasp Planners
• Grasp Datasets

Motion Planning
• Motion Planners
• Motion Planning Datasets

Perception
• Scene Segmentation
• Object Detection
• Pose Estimation

Simulation
• Simulators
• Models and Descriptions
• Learning Environments

Hardware Designs
• Arms and End-effectors
• Tactile Sensors
• Data Collection Hardware

Datasets
• Grasp Datasets
• Manipulation Datasets
• Object Datasets

Benchmarking
• Objects and Artifacts
• Tools and Testbeds
• Protocols

Leaderboards
• Pick-and-Place
• Assembly/Disassembly
• In-Hand Manipulation

Repositories of Open-Source Products and Benchmarking Assets

Grasp Planner Input Data Output Pose Camera
6-DoF GraspNet Point cloud 6-DoF grasp pose (x, y, z, r, p, y) Eye-in-hand

Contact-GraspNet Point cloud 6-DoF grasp pose (x, y, z, r, p, y) Eye-in-hand
DeepRL-Manip Depth image Grasp policy Eye-in-hand

GPD Point cloud 6-DoF grasp pose (x, y, z, r, p, y) Eye-in-hand
GraspSAM RGB image 2D grasp rectangle (x, y, width, height, angle) Overhead

ICG-Net Point cloud 6-DoF grasp pose (x, y, z, r, p, y) Oblique
PointNet++ Point cloud 7-DoF grasp pose (x, y, z, r, p, y, gripper width) Eye-in-hand

RGBD-Grasp RGBD image 7-DoF grasp pose (x, y, z, r, p, y, gripper width) Eye-in-hand
VGN Depth image 6-DoF grasp pose (x, y, z, r, p, y) Eye-in-hand

… … … …

[1] Khargonkar, Ninad, Sai Haneesh Allu, Yangxiao Lu, Balakrishnan Prabhakaran, and Yu Xiang. "SceneReplica: Benchmarking Real-World Robot Manipulation by Creating Replicable Scenes." In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 8258-8264. IEEE, 2024.
[2] Zhao, Huajing, Brian Flynn, Adam Norton, and Holly Yanco. “Towards Developing Standards and Guidelines for Robot Grasping and Manipulation Pipelines in the COMPARE Ecosystem.” In the AAAI Fall Symposium 2025 on Unifying Representations for Robot Application Development, Arlington, VA, USA, November 2025.

Home of the COMPARE Ecosystem and a landing page for open-source and benchmarking in robot manipulation

1. Characterize open-source components
Define set of relevant parameters for each type of 
software component to determine commonalities

2. Investigate existing modular pipelines 
SceneReplica [1] has pipelines in ROS 1 for 
model-based and model-free grasping with 
modular perception and grasp planning 

3. Develop new modular pipelines
Build pipelines in ROS 2 using FlexBE to request 
ROS services by using behaviors consisting of 
states, input and output keys, and parameters [2]

4. Conduct side-by-side benchmarking
Integrate existing open-source components – 
variable perception and grasp planning, fixed 
motion planning – into the pipelines using ROS 2 
wrappers and benchmark following picking in 
clutter protocol from SceneReplica [1]

5. Glean best practices and lessons learned
Draft proposed standards and guidelines and 
iteratively share with COMPARE community

translate between the two environments across a network. This
allows existing resources to be used without needing to migrate
code before integration. Our work-in-progress repository for
all FlexBE assets can be found on GitHub8.

IV. NEXT STEPS AND CONCLUSION

In the near term, we will use our developed infrastructure
to produce pipelines (like that shown in Fig. 2) to integrate
a variety of open-source components and conduct extensive
side-by-side benchmarking for pick-and-place – following
the SceneReplica protocol – and develop draft specifications
of the proposed standards and guidelines that are used to
drive the pipelines. For now, We expect to hold the motion
planning components static (e.g., OMPL in MoveIt) while
varying perception and grasp planning. Several grasp planners
(in addition to the previously mentioned 6-DoF GraspNet,
Contact-GraspNet, GraspIt!, and GPD) have already been
identified as potential options for this exercise, including
Grasp Proposal Network (GP-Net) (21), ICG-Net (22), MISC-
Grasp (23), PointNetGPD (24), and Volumetric Grasp Network
(VGN) (25). The contributions of this exercise are three-fold:

1) A set of draft guidelines for component-level open-
source software components and standards for pipeline-
level open-source software pipelines,

2) Several example functional implementations of robot
manipulation pipelines that leverage the standards and
guidelines, and

3) An extensive set of benchmarks of truly comparable
modular pipelines with a variety of components.

All materials will be iteratively shared with the COM-
PARE Ecosystem community to provide feedback. We will
encourage other institutions to replicate the example pipelines
we provide to repeat the experiments in their own labs. The
leaderboard the SceneReplica benchmarking protocol – hosted
on Robot-Manipulation.org9 – will be updated to include the
benchmarks derived from this exercise. As participation grows,
we hope to see others in the community adapt their open-
source contributions to follow the COMPARE standards and
guidelines to produce modular components that can be easily
integrated into these pipelines. Additionally, we intend to use
the developed infrastructure to produce other types of pipelines
such as those used for assembly and disassembly with the
NIST Assembly Task Boards benchmarking effort (26). We
hope the community will similarly develop their own pipelines
to further propagate the COMPARE vision.

As a community-based effort, the COMPARE Ecosystem
relies on participation from robot manipulation researchers,
open-source developers, and industry users. All interested
parties are encouraged to provide feedback by visiting Robot-
Manipulation.org, join the Slack and/or Google Group, and
reach out to the organizers.

8https://github.com/uml-robotics/compare flexbe
9https://www.robot-manipulation.org/benchmarking/leaderboards/

Model-Free Perception

Model-Free Grasping (GPD)

Pick and Place Task

States

GetPointCloud

camera topic full cloud ...

VoxelGridFilter

leaf size filtered cloud ...

OutlierRemoval

radius max filtered cloud ...

PlaneSegmentation

plane indices ...

ClusterExtraction

cluster indices ...

Input Keys

full cloud filtered cloud ...

Output Keys

full cloud cluster indices

camera pose ...

Parameters Used

camera topic leaf size ...

States

DetectGrasps

full cloud cluster indices ...

FilterCandidates

grasp candidates ...

CalculateGraspPoses

tool width grasp poses ...

Input Keys

full cloud cluster indices ...

Output Keys
grasp poses ...

Parameters Used

tool width ...

States

MoveToApproach
grasp poses ...

PerformGrasp
grasp poses outcome step size

MoveToDropoff

dropoff pose ...

Input Keys
grasp poses ...

Output Keys

outcome ...

Parameters Used

step size dropoff pose ...

Fig. 2: Block diagram for perception-to-action pipelines in
FlexBE using ROS2 with state-based function calling and
control indicating examples of different data types that are
accessed and modified.

Example perception-to-action pipeline using FlexBE in 
ROS 2 with state-based function calling and control [2]

Grasp planners and their relevant characteristics for integration [robot-manipulation.org]

+ ++ +

Robot

UR5e with RF-85 
and RealSense

Motion Planning

OMPL

Control

MoveIt 2

Perception

YOLOv11

Grasp Planning

Contact-GraspNet

Modular components of a grasping and manipulation pipeline with example open-source components

Option 1: Model-based Pipeline Option 2: Model-free Pipeline

Scene/Data Loader
CLI & ROS Setup

Load YCB models, scene metadata

Object Pose Estimation
PoseCNN PoseRBPF ...

Grasp Processing
GraspIt! Top-Down ...

Object Segmentation
UCN MSMFomer ...

Grasp Sampling
6D-GN Contact-GN ...

Grasp Filtering
Convert, filter, shuffle grasps

Motion Planing and Execution
Plan standoff and final grasp

Post-grasp manipulation (lift, rotate, etc.)

object list,
percept. & grasp options

object poses masked objects

candidate grasp poses

sorted grasp candidates

Fig. 1: Block diagram for perception-to-action pipelines in
SceneReplica using ROS1 with interchangeable model-based
and model-free grasp planning options.

C. Developing New Modular Pipelines

For COMPARE, we aim to achieve levels of modularity
similar to efforts like SceneReplica, so we are gleaning best
practices while also advancing the approach. Our vision is
to develop infrastructure tools in ROS2 that can be used by
the community to create pipelines that control the flow of
an experiment wherein users utilize existing ROS packages
or create their own components that follow the established
standards and guidelines to “drop in.” Components should
be interchangeable to be readily swapped out without having
to write new code and the user should make minimal mod-
ifications to the infrastructure set-up to match their testing
needs. The infrastructure should also be sufficiently hardware-
agnostic, assuming that the hardware is ROS compatible
and a ROS driver exists; see the PickNik ROS2 Compatible
Hardware list4. However, accommodations for ROS1 must
also be made as many open-source contributions are not yet
available for ROS2. Prior work to develop this infrastructure
is reviewed in (19).

To this end, we are developing new pipelines that rely
on FlexBE, a high-level behavior engine for ROS that is
“designed to ease the development and execution of complex
robotic behaviors through the use of Hierarchical Finite State
Machines (HFSMs).” 5 See Fig. 2 for a block diagram of an ex-
ample perception-to-action pipeline using FlexBE to perform
model-free grasping using Grasp Pose Detection (GPD) (20).

4https://picknik.ai/hardware-ecosystem/
5https://flexbe.readthedocs.io/en/latest/

The FlexBE states are constructed such that each requests a
single service and ultimately performs a single task to allow
for a high degree of modularity when building a behavior.
FlexBE also provides a drag-and-drop interface, so any states
(or group of states) within a behavior can be modified on the
fly to add, remove, or the change the order of states as needed.
It is also trivial to add in timers or additional checks between
states to assist with debugging during development or towards
evaluating performance metrics as part of a benchmarking
protocol. Each state is constructed such that it can be tem-
plated, with ample comments and boilerplate code to ensure
that new states are simple and straightforward to develop.
Creating a new service state requires knowledge of the service
topic name, the service request and response fields, and some
knowledge of how user data and parameters are utilized within
FlexBE.

User data variables and their values are handled within
the FlexBE behavior and act as shared resources that can be
accessed by any state as long as they are defined as input

keys or output keys in the state code. Parameters in FlexBE
function very similarly to ROS parameters; they are shared
and accessible, but not modifiable during runtime. Because
of this, no data is truly “passed” between states, but each
state accesses the live data during runtime and then uses
that data to make a request to a service or action. Once
that service or action returns a response, there is another
opportunity for the state to update the internal user data before
the state completes and the next state is allowed to start
based on the triggered outcome. Parameters are typically only
modified at the beginning of an experiment and are meant to
set conditions; for example, setting a max counter value as part
of evaluating a performance metric. Essentially, these values
can be used to access persistent measurements or system
conditions the user wants to protect.

Similar to states, service server and action server nodes
are constructed with a single goal in order to promote and
exercise modularity. Each node waits for a request, performs
a specific function such as sending MoveIt commands to a
robot, processing a point cloud, or even stopping or starting a
recording software for well-timed data capture. This structure
is also fairly templated and the structure for creating a node
is maintained across different nodes with regards to ROS2
functionality and object-oriented structure.

The primary computer executing the pipeline contains the
FlexBE components including states and behaviors, as well
as the perception, planning, and execution components which
are aided by compartmentalized utilities. Utilities come in the
form of services and action servers where appropriate – nodes
in the background which perform an operation when requested
and return a result often containing processed information and
outcomes. To allow ROS1 packages to be leveraged (e.g.,
GPD6), we use a second machine consisting of a ROS1 and
ROS2 workspace such that we can use the ros1 bridge7 to

6https://github.com/atenpas/gpd
7https://github.com/ROS2/ros1 bridge/

Perception-to-action pipelines in SceneReplica [1] using ROS 1
Benchmarking Modular Components

Methodology: Vary one type of component in the 
pipeline while all other components remain fixed and 
compare performance of the varied components 

E.g.: 6-DoF GraspNet vs. GPD vs. ICG-Net; same 
input (point cloud) and output (6-DoF grasp pose)


