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What's the problem?

RL agents must learn both a useful observation representation &

policy optimisation with one supervisory signal: reward
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rl + ssl setup

Self-supervised learning (SSL) provides an additional signal for

converting complex observations into useful representations

RoTO:Robot Tactile Olympiad

To inspire progress in tactile-based dexterity, we are releasing our novel
Isaac Lab environments as a new benchmark! We include in-built

hyperparameter optimisation, robustly tuned baselines, self-supervision

integration, and more.
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Proposition: self-supervision
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reconstruction-based ssl objectives
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dynamics-based ssl objectives

full dynamics (FD)
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1. Find an object

2. Bounce a

ball without dropping

3. Baoding ball rotation

Finding 1. Sparse binary contacts + proprioception sufficient for superhuman dexterity

Following the intuition that truly blind dexterity
should be possible, we studied a setup with no

vision or privileged information.

With our methodology we achieve super-human
dexterity with only a history of proprioception and

17 binary tactile activations as observations.
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Finding 2. Self-supervision greatly improves performance of tactile-based agents

Compared to RL-only agents the best 00 O
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SSL agents on average find an object

36% faster (1.4 vs 1.9 seconds), bounce a > ﬁp
ball 8 more times in 10 seconds (79 vs
71), and complete 17 Baoding rotations

compared to 5 in 10 seconds.

Dynamics-based objectives had the
strongest performance, and led to
agents that could predict states multiple
steps into the future with high precision

(e.g. when and where the ball would land)

We also find that on-policy SSL agents
can benefit from off-policy data, by
separating the auxiliary memory from the

RL rollout memory and increasing its size.
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Learned forward model could predict future
contact states to high precision
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Bounce + tactile reconstruction
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Bounce + dynamics
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PCA of state representation z for one episode for Bounce agents



