Motivation

Why Real-World Reinforcement Learning?
e Enables Robots to learn autonomously

from direct physical interactions

» Opens possibilities tor selt-improvement

Why is it hard?

e RL can take millions ot samples to learn

* The robot can easily induce unsafe

behavior and break itself during training

SLAC: Simulation-Pretrained Latent Action Space for Whole-Body Real-World RL

Jiaheng Hu, Peter Stone, Roberto Martin-Martin

Step 1: Latent Action Space Learning
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Temporally Extended Whole-body Motions

How can we make Real-world Reinforcement Learning work on Mobile Manipulators?

Our key idea: boost sample efficiency and ensure safety by operating in a
good action space, one that can be pre-learned entirely in a low-fidelity simulator.

Step 2: Downstream Task Learning via Real-World RL
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Check out our

SLAC can learn challenging tasks within an hour of interactions! vehsite for videos!

Real-world Downstream Tasks
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